

Тепловые насосы воздух-вода

30RH 005-013

Номинальная холодопроизводительность 5,1-11,5 кВт Номинальная теплопроизводительность 5,7-13,8 кВт

Это новое поколение тепловых насосов характеризуется использованием новейших технологических разработок, в том числе: улиточные компрессоры и работа на экологичном холодильном агенте HFC-410A.

В тепловых насосах 30RH производства компании Carrier имеется встроенный гидронный модуль с насосом и расширительным баком, благодаря чему установка агрегата сводится к выполнению лишь таких достаточно простых операций, как подключение к системам электропитания и водоснабжения и к обратным трубопроводам.

Электронная, микропроцессорная и автоадаптивная система управления представляет собой интеллектуальную систему управления, обеспечивающую программируемое управление последовательностью пуска компрессоров, что позволяет агрегату работать при небольшом объеме воды в системе.

Особенности

- Холодильный агент R-410A, который представляет собой смесь R-32 и R-125, обладает прекрасными рабочими характеристиками, существенно превосходящими рабочие характеристики R-22, и служит экономически выгодным решением проблем защиты окружающей среды. Используемый холодильный агент не оказывает вредного воздействия на озоновый слой и может быть использован вместо R-22 в системах кондиционирования воздуха малой и средней производительности.
- Компоненты этих агрегатов специально сконструированы для работы на холодильном агенте R-410A, причем каждый агрегат проходит лабораторные испытания, необходимые для обеспечения безотказной работы.
- В агрегате содержится один или два двухскоростных осевых вентилятора с горизонтальной подачей воздуха. Прогрессивная конструкция обеспечивает работу вентиляторов с крайне низким уровнем шума. При работе в режимах неполной нагрузки или в условиях низких температур наружного воздуха частота вращения вентиляторов автоматически снижается на 50 %, что дополнительно уменьшает уровень шума. Система

управления также позволяет программировать работу вентиляторов на пониженной частоте вращения в течение заданного периода времени.

- Небольшие габаритные размеры и уменьшенный вес этих агрегатов облегчают установку даже при наличии весьма ограниченных объемов.
- Применение панелей из оцинкованной стали гарантирует повышенную коррозионную стойкость в различных атмосферных условиях. Эти компоненты успешно выдерживают испытательное воздействие коррозионной атмосферы в течение 500 часов, что даже превосходит жесткие требования на проведение испытаний с распылением соли согласно ASTM (Американское общество по испытанию материалов) 117.
- Панели являются съемными, что повышает качество технического обслуживания и облегает доступ к внутренним компонентам.
- Змеевики конденсаторов изготавливаются из медных труб с алюминиевыми ребрами, что обеспечивает увеличение поверхности теплообмена.
- Теплообменники холодильный агент-вода относятся к теплообменникам пластинчатого типа, которые характеризуются оптимальной теплоотдачей при уменьшенных размерах. Теплообменные плиты изготавливаются из нержавеющей стали методом сварки. Для теплообменников такого типа требуется меньше холодильного агента по сравнению с традиционными теплообменниками такой же производительности.
- Улиточные компрессоры работают очень тихо и практически без вибраций. Они отличаются большим сроком службы и надежностью. Двигатели охлаждаются только всасываемых паром и позволяют осуществлять до 12 пусков в час. Эти компрессоры специально спроектированы для работы на холодильном агенте R-410A.
- Инициируемые системой микропроцессорного управления циклы размораживания наружных теплообменников обеспечивают высокоэффективную работу агрегата при низких температурах наружного воздуха.

• Компоненты гидроники устанавливаются при изготовлении агрегата, что исключает необходимость выполнения достаточно сложных сборочных работ на месте.

В комплект гидроники входят следующие компоненты:

- реле расхода
- расширительный бак
- трехскоростной циркуляционный насос
- ручной продувочный вентиль
- сливной водяной вентиль
- предохранительный клапан

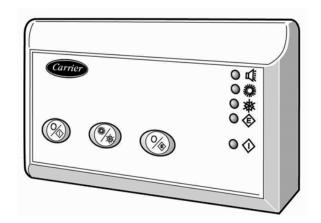
Система управления PRO-DIALOG Plus

PRO-DIALOG Plus представляет собой современную цифровую систему управления, которая совмещает в себе сложную развитую логику с эксплуатационной простотой. Система PRO-DIALOG Plus осуществляет непрерывный мониторинг всех параметров и предохранительных устройств машины, а также точное управление режимом работы компрессоров и вентиляторов, обеспечивающим оптимальный расход энергии. Система также управляет работой водяного насоса.

Система управления с высоким уровнем автоматизации

- Алгоритм пропорционально-интегральнодифференциального регулирования с непрерывной компенсацией по разности температур входящей и выходящей воды упреждает вариации нагрузки и обеспечивает программируемое регулирование температуры выходящей воды.
- Двойная уставка: Прогнозируя тепловую нагрузку в кондиционируемых зонах в течение дня, можно вручную запрограммировать или выбрать две различных уставки

температуры подаваемой воды. Это гарантирует максимальный комфорт при минимальном расходе энергии.


- Система управления PRO-DIALOG Plus представляет собой автоадаптивную систему, что повышает степень защиты теплового насоса. Циклирование компрессора автоматически приспосабливается к характеристикам системы в части инерционности водяного контура, благодаря чему исключается опасность чрезмерно частых пусков компрессора.
- Входящая в состав аксессуаров синхронизирующая плата CCN расширяет функции агрегата:
- Протокольный интерфейс CCN для обеспечения полного взаимодействия и совместимости с сетью CCN Carrier
- Часы реального времени

Наличие этой платы и использование инструмента ССN (например, входящий в комплект аксессуаров сервисный интерфейс) обеспечивает возможность использования следующих новых и усовершенствованных функций: Работа агрегата по расписанию с использованием до восьми программ, каскадная работа двух агрегатов, дистанционное управление и программирование продолжительности работы вентиляторов на пониженной частоте вращения.

Система дистанционного управления

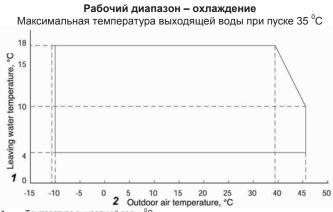
Система дистанционного управления, соединенная с наружным агрегатом, позволяет пользователю легко управлять функциями главного агрегата: пуск/остановка, выбор нужной температуры при пониженном расходе энергии, отображение общих аварийных сигналов.

Разработано дистанционное управление для внутреннего использования в жилищных и торговых помещениях.

Блок дистанционного управления

Аксессуары

Аксессуар
Х
Х
Х
Х


Физические характеристики

30RH		005	007†	009	011	013
Номинальная холодопроизводительность*	кВт	5.1	6.7/6.3	7.2	9.6	11.5
Номинальная теплопроизводительность**	кВт	5.7	7.5/7.7	8.7	10.1	13.8
Рабочий вес	КГ	83	85	88	112	123
Количество холодильного агента	КГ	1.53	1.80	1.91	3.58	3.80
Компрессор	*	Один ули	точный компрессо	р	*	
Теплообменник холодильный агент-вода		Один пла	стинчатый теплоо	бменник		
Объем воды нетто	Л	0.66	0.85	0.94	1.22	1.50
Рабочее давление на стороне воды	кПа	300	300	300	300	300
Гидравлический контур						
Hacoc		Один трех	кскоростной насос			
Возможное давление***	кПа	46	38/37	50	34	34
Водяные патрубки впуска/выпуска	дюйм	1	1	1	1	1
Емкость расширительного бака	л	1	1	2	2	2
Вентиляторы	•	Один или	два пропеллерны	х вентилятора	**	**
Количество/диаметр вентиляторов Количество лопастей	ММ	1/370 4	1/370 4	1/370 4	2/370 4	2/370 4
Частота вращения вентилятора	с ⁻¹ (об/с)	14.0	17.2	19.1	17.2	20.0

Электрические характеристики

30RH		005	007	007	009	Oil	013
Номинальные данные источника электропитания	В-ф-Гц	230-1-50	230-1-50	400-3-50	400-3-50	400-3-50	400-3-50
Диапазон напряжений	В	198-264	198-264	342-462	342-462	342-462	342-462
Номинальная потребляемая мощность		•	•	•	•		•
Охлаждение*	кВт	2.02	2.76	2.57	2.95	3.28	4.56
Нагревание**	кВт	2.09	2.74	2.70	3.12	3.34	3.72
Ток при заторможенном роторе	Α	40	50	37	39	54	60
Ток при полной нагрузке	Α	14	18	6.5	6.5	8.0	11.5
Водяной циркуляционный насос (230-1-50)							
Потребляемый ток	Α	0.3	0.3	0.3	0.5	0.5	0.5
Двигатель вентилятора (230-1-50)		•	•	•	•		•
Потребляемый ток	Α	0.5	0.82	0.82	0.82	1.64	1.64
Подогреватель картера компрессора (230-1-50)							
Потребляемый ток	Α	0.11	0.11	0.11	0.11	0.11	0.11

Эксплуатационные ограничения

Температура выходящей воды, 0 C Температура наружного воздуха, 0 C

Рабочий диапазон - нагревание Температура выходящей воды при пуске 10 °C ပွ 20 1 15 -15 -10 10 25 2 Outdoor air temperature, °C

Условия Eurovent: Температура воды, поступающей в испаритель/выходящей из испарителя, 12 °C/7 °C; температура поступающего в конденсатор воздуха 35 °C. Условия Eurovent: Температура воды, поступающей в конденсатор/выходящей из конденсатора, 40 °C/45 °C; температура поступающего в испаритель воздуха 7 °C по сухому термометру/6 °C по влажному термометру. При номинальном расходе и высокой частоте вращения насоса. Первое значение для однофазных агрегатов, второе значение для трехфазных агрегатов.

Условия Eurovent: Температура воды, поступающей в испаритель/выходящей из испарителя, 12 °C/7 °C; температура поступающего в конденсатор воздуха 35 °C. Условия Eurovent: Температура воды, поступающей в конденсатор/выходящей из конденсатора, 40 °C/45 °C; температура поступающего в испаритель воздуха 7 °C по

Значения холодопроизводительности

30RH	І Тем	пера	тура п	остуг	паюш	его в	оздух	κa, ^⁰ C																		
	LWT	25					30					35					40					45				
		CAP	COMP		COOL	PRES	CAP	COMP		COOL	PRES	CAP	COMP		COOL	PRES	CAP	COMP		COOL	PRES	CAP	COMP	UNIT	COOL	PRES
	°C	kW	kW	kW	l/s	kPa	kW	kW	kW	l/s	kPa	kW	kW	kW	l/s	kPa	kW	kW	kW	l/s	kPa	kW	kW	kW	l/s	kPa
005	5		1.40	1.54			5.15	1.60		0.25	45	4.85	1.82	1.96		48	4.49	2.05	2.19		51	4.06	2.29	2.44	0.19	54
007-7		7.16	2.08		0.34	31	6.72	2.24		0.32	35	6.23	2.43	2.65		39	5.68	2.66		0.27	44	5.07	2.94	3.15	0.24	48
007-9 009			1.90 2.04	2.12 2.31		33 48		2.05 2.31		0.30	37 50		2.25 2.60	2.46 2.88		41 52	5.30 6.27	2.48 2.91		0.25	45 54		2.75 3.23	2.97 3.51		49 57
011			2.27	2.64			9.50	2.55	2.92		35		2.86	3.23		38	8.01	3.20		0.38	41		3.57	3.94		44
013		11.9	3.19	3.60	0.57	33	11.5	3.64	4.05	0.55	34	11.0	4.12	4.53	0.52	36	10.3	4.64	5.04	0.49	38	9.40	5.19	5.60	0.45	40
	6	5.46	1.40	1.55		43	5.24	1.61	1.75	0.25	45	4.97	1.83	1.97	0.24	47	4.63	2.06	2.20	0.22	50	4.23	2.30	2.45	0.20	53
007-7			2.09	2.31			6.95	2.26	2.48		33		2.47	2.68		37	5.93	2.71		0.28	42	5.34	3.00			46
007-9 009			1.90 2.06	2.12		31 47	6.57 7.46	2.07 2.33		0.31	35 49		2.28	2.50		39 51	5.55 6.51	2.53 2.93	3.20	0.26	43 53	4.96 5.99	2.81 3.24	3.03		47 56
011			2.28	2.65		29		2.56		0.300	33	9.20		3.24		36	8.47			0.40	39		3.57	3.94		42
013		12.1	3.22	3.63	0.58	32		3.65	4.05	0.56	33	11.3	4.11	4.52	0.54	35	10.6	4.61	5.02	0.51	37	9.76	5.15	5.56	0.46	39
005	7	5.52	1.41	1.55	0.26	42	5.34	1.61	1.76	0.25	44	5.05	1.83	2.02	0.24	46	4.77	2.07	2.21	0.23	49	4.39	2.31	2.46	0.21	51
007-7			2.09	2.31		27	7.18	2.27		0.34	31		2.50	2.76		35	6.18	2.76		0.29	40	5.60	3.06	3.28		44
007-9			1.90	2.12		29 46	6.80 7.70	2.09		0.32	33 48		2.31	2.57		37 50	5.81	2.58		0.28	41		2.88			46 55
009 011			2.08 2.29	2.35 2.66		46 27	10.4	2.35 2.56	2.93	0.37	48 31		2.64 2.87	2.95 3.28		34	6.75 8.93	2.94 3.20		0.32 0.43	52 37	6.23 8.21	3.26 3.57	3.54 3.94		55 40
013			3.24	3.65		31		3.65	4.06		32		4.11	4.56		34		4.59		0.52	36	10.1	5.12	5.53		38
005	8	5.59	1.41	1.56	0.27	41	5.43	1.62	1.76	0.26	43	5.20	1.84	1.98	0.25	45	4.91	2.08	2.22	0.23	47	4.55	2.32	2.47	0.22	50
007-7			2.09	2.32		24	7.40	2.29	2.51		28		2.53	2.75		33	6.43	2.81	3.03		38		3.13	3.35		42
007-9			1.90	2.13		27	7.03	2.10	2.33		31		2.34	2.56		35	6.06	2.62		0.29	39	5.49	2.94		0.26	44
009 011		8.37 11.5	2.10	2.37		44 25		2.37 2.57		0.38	47 29	7.49 10.1		2.93		49 32		2.96 3.21		0.33 0.45	51 35	6.47 8.68	3.28	3.55 3.94		54 38
013			3.26	3.67		31		3.66		0.58	32		4.10	4.51		33	11.2			0.54	35		5.08		0.50	37
005	9	5.66	1.42	1.56	0.27	41	5.52	1.63	1.77	0.26	42	5.31	1.85	1.99	0.25	44	5.05	2.08	2.23	0.24	46	4.72	2.34	2.48	0.22	49
007-7		8.02	2.09	2.32	0.38	22	7.63	2.31	2.53	0.36	26	7.19	2.56	2.79	0.34	31	6.69	2.86	3.08	0.32	35	6.13	3.19	3.41	0.29	40
007-9			1.90	2.13				2.12	2.34		28	6.81	2.38	2.60		33	6.31	2.67		0.30	37		3.01	3.23		42
009 011			2.11	2.38		43 23	8.19 11.2	2.39 2.57		0.39	45 27	7.73	2.67 2.88	2.94 3.25		48 30	7.24 9.84	2.97 3.21		0.34 0.47	50 33	6.71 9.16	3.29 3.57	3.57 3.94	0.32	52 36
013			3.29	3.70		30	12.5			0.60	31		4.09	4.50		32		4.55		0.55	34		5.05	5.46		36
005	10	5.73	1.42	1.57	0.27	40	5.61	1.63	1.78	0.27	41	5.43	1.86	2.00	0.26	43	5.19	2.09	2.24	0.25	45	4.88	2.35	2.49	0.23	48
007-7			2.09	2.32		19	7.86	2.32	2.55		24		2.60	2.82		28		2.91		0.33	33		3.26		0.30	38
007-9			1.90	2.13		22	7.48	2.14		0.36	26		2.41	2.63		30	6.56	2.72	2.94		35	6.02	3.07		0.29	40
009			2.13	2.40		42	8.43 11.6	2.40 2.58		0.40	44 25	7.97	2.69 2.88	2.96		46	7.48	2.99 3.21		0.36 0.49	49		3.31 3.57	3.58 3.94	0.33	51 34
011 013			3.31	2.69 3.72		21 29	11.6		2.96 4.09	0.55	30	11.0 12.4	2.88 4.09	3.25 4.50		28 31		3.21 4.53		0.49	31 33	9.63			0.46	34 35
010		12.0	0.01	0.12	0.02		12.7	0.00	1.00	0.01		12.7	1.00	7.00	0.00	01	1 1.5	1.55	7.07	0.01		11.2	0.01	0.72	0.00	

Значения для типоразмеров 007-7 относятся к однофазным агрегатам, значения для типоразмеров 007-9 относятся к трехфазным агрегатам

Легенда:

LWT CAP kW Температура выходящей воды

САР kW Холодопроизводительность нетто (кВт) = холодопроизводительность брутто плюс производительность при возможном давлении (расход х давление/0,3)

СОМР kW Мощность, потребляемая компрессором (кВт)

UNIT kW Мощность, потребляемая агрегатом (компрессоры, вентиляторы,

система управления и насосы) минус производительность при

возможном давлении (расход х давление/0,3) (кВт) Расход воды через испаритель (л/с)

РRES кРа Возможное давление на выходе агрегата (агрегат с гидронным модулем с однопоточным насосом)

□ Производительность при стандартных условиях EUROVENT

Представленные рабочие характеристики могут иметь следующие допуски согласно EUROVENT: На теплопроизводительность и холодопроизводительность: - 5 %

На потребляемую мощность: + 5 % На падение давления: + 15 %

Поправочные коэффициенты при полной нагрузке при проведении

лабораторных испытаний согласно Eurovent: Холодопроизводительность нетто 1.000 Коэффициент энергетического кпд Падение давления в испарителе 1.000

Данные по применению:

Холодильный агент: R-410A Повышение температуры в испарителе: 5К

Жидкость испарителя: охлажденная вода Степень загрязнения: 0,000044 м² К/Вт

Значения теплопроизводительности

30RH	TeM	_	тура	пост	упаю	щего	BO3/													-											
		-10						-5						0						7						10					
	LWT	CAP	CAP	COMP	LIND	COND	PRES	CAP	CAP	COMP	LINO	COND	PRES	CAP	CAP	COMP	LIND	COND	PRES	CAP	CAP	COMP	LIND	COND	PRES S	CAP	CAP	COMP	LINO	COND	PRES S
		Inte	Inst					Inte	Inst.					Inte	Inst					Inte	Inst					Inte	Inst.				
	°c	kW	kW	kW	kW	l/s	кРа	kW	kW	kW	kW	l/s	кРа	kW	kW	kW	kW	l/s	кРа	kW	kW	kW	kW	l/s	кРа	kW	kW	kW	kW	l/s	кРа
005	30	3.15	3.63	1.40	1.54	0.17	56	3.45	4.10	1.26	1.40	1.55	53	4.19	4.85	1.32	1.46	1.60	48	5.86	5.86	1.36	1.50	1.64	38	6.24	6.24	1.38	1.52	1.67	34
007-7		3.85	4.43	1.99	2.22	0.21	52	4.26	5.06	1.78	2.01	2.23	48	5.22	6.05	1.86	2.09	2.30	40	7.84	8.06	2.06	2.29	2.52	21	7.86	7.86	1.85	2.08	2.31	23
007-9		l			1.87		48	4.58	5.45	1.45		1.88		5.58		1.52				8.31		-	1.94			8.07	8.07	1.82	2.04	2.27	19
009					2.17			4.76	5.66	1.64		2.18		5.87		1.72		2.26		8.87			2.22			8.91	8.91	2.70	2.97	3.24	42
011					2.61			6.28	7.46	1.89		2.63		7.58		1.98		2.72		10.4			2.21			11.0	11.0	1.88	2.25	2.63	27
013		7.39	8.51	2.88	3.29	0.41	43	8.13	9.66	2.49	2.90	3.31	40	9.91	11.5	2.61	3.02	3.43	34	14.3	14.3	2.75	3.16	3.57	23	15.2	15.2	2.80	3.21	3.64	19
005	35	3.10	3.58	1.53	1.67	0.17	57	3.40	4.05	1.40	1.54	1.68	54	4.13	4.80	1.45	1.59	1.74	48	5.85	5.85	1.51	1.65	1.80	38	6.23	6.23	1.54	1.68	1.83	34
007-7		3.78	4.37	2.17	2.40	0.21	52	4.19	4.99	1.96	2.19	2.41	48	5.15	5.98	2.03	2.26	2.48	41	7.76	7.99	2.24	2.47	2.70	22	7.89	7.89	2.06	2.29	2.52	23
007-9		4.10	4.73	1.83	2.05	0.23	49	4.51	5.38	1.62	1.84	2.06	44	5.51	6.40	1.69	1.91	2.13	36	8.22	8.46	1.89	2.11	2.35	15	8.10	8.10	2.03	2.25	2.48	19
009		4.21		2.11		0.23	60	4.69	5.58	1.84		2.39		5.79	6.73			2.47		8.78			2.43			8.88	8.88	2.66	2.93	3.20	42
011		l	6.52			0.31		6.19	7.37	2.11		2.85		7.49		2.20				10.4			2.51			11.0	11.0	2.18	2.55	2.92	27
013		7.27	8.38	3.18	3.59	0.40	43	8.01	9.54	2.79	3.20	3.61	40	9.78	11.4	2.91	3.32	3.73	34	14.3	14.3	3.11	3.52	3.94	24	15.2	15.2	3.17	3.58	4.00	19
005	40	3.04	3.49	1.69	1.83	0.17	57	3.35	3.96	1.55	1.69	1.84	54	4.09	4.71	1.61	1.75	1.89	49	5.81	5.81	1.71	1.85	2.00	39	6.19	6.19	1.74	1.88	2.02	35
007-7		3.71		2.38		0.20	53	4.13	4.87	2.17	2.40	2.62	49	5.09			2.47	2.69		7.70	7.87	2.45	2.68	2.90	23	7.89	7.89	2.29	2.52	2.75	23
007-9		4.03			2.25			4.45	5.25	1.83	2.05	2.27	45	5.44	6.27	1.90	2.12	2.34	37	8.16	8.34	2.10	2.32	2.55	16	8.10	8.10	2.26	2.48	2.71	19
009		4.12	4.72	2.35	2.62	0.23	61	4.61	5.44	2.08	2.35	2.63	58	5.72	62.9	2.16	2.43	2.71	53	8.71	8.90	2.39	2.66	2.94	42	8.97	8.97	2.75	3.02	3.30	41
011		5.56	6.36	2.73	3,10	0.30	47	6.10	7.21	2.37	2.74	3.11	44	8.70	8.70	2.49	2.86	3.23	38	10.3	10.3	2.51	2.88	3.25	31	10.9	10.9	2.56	2.93	3.30	28
013		7.13	8.16	3.54	3.95	0.39	44	7.89	9.32	3.14	3.55	3.97	41	9.67	11.1	3.27	3.68	4.09	35	14.2	14.2	3.58	3.99	4.40	24	15.1	15.1	3.63	4.04	4.47	20
005	45	-	-	-	-	-	-	3.30	3.83	1.73	1.87	2.02	55	4.05	4.58	1.79	1.93	2.07	50	5.70	5.70	1.95	2.09	2.24	43	6.11	6.11	1.97	2.11	2.26	36
007-7		-	-	-	-	-	-	4.06	4.71	2.41	2.64	2.86	50	5.03	5.69	2.48	2.71	2.93	43	7.49	7.49	2.51	2.74	2.97	29	7.86	7.86	2.54	2.77	3.00	23
007-9		-	-	-	-	-	-	4.38	5.08	2.06	2.28	2.50	46	5.39	6.10	2.14	2.36	2.58	39	7.70	7.70	2.48	2.70	2.93	29	8.07	8.07	2.51	2.73	2.96	19
009		-	-	-	-	-	-	4.52	5.25	2.35	2.62	2.90	59	5.65	6.39	2.44	2.71	2.98	54	8.70	8.70	2.85	3.12	3.40	47	9.18	9.18	2.97	3.24	3.52	40
011		-	-	-	-	-	-	6.02	6.98	2.67	3.04	3.41	44	8.57	8.57	2.95	3.32	3.69	38	10.1	10.1	2.97	3.34	3.72	39	10.8	10.8	3.01	3.38	3.75	28
013		-	-	-	-	-	-	7.77	9.01	3.55	3.96	4.37	4.1	9.57	10.8	3.68	4.09	4.49	36	13.8	13.8	4.14	4.55	5.03	27	14.9	14.9	4.19	4.60	5.03	21
005	50	-	-	-	-	-	-	-	-	-	-	-	-	4.01	4.42	2.00	2.14	2.28	51	5.62	5.62	2.23	2.37	2.51	41	6.00	6.00	2.25	2.39	2.54	37
007-7		-	-	-	-	-	-	-	-	-	-	-	-	4.97	5.47	2.75	2.98	3.20	45	7.46	7.46	2.79	3.02	3.24	28	7.80	7.80	2.82	3.05	3.27	24
007-9		-	-	-	-	-	-	-	-	-	-	-	-	5.33	5.87	2.40	2.62	2.84	40	7.67	7.67	2.76	2.98	3.21	24	8.01	8.01	2.79	3.01	3.24	20
009		-	-	-	-	-	-	-	-	-	-	-	-	5 57	6 14	2 75	3 02	3 29	55	9 08	9 08	3 19	3 46	3 74	41	-		-	-		
011		-	-	-	-	-	-	-	-	-	-	-	-	8.38			3.85		39	9.97	9.97		3.87		32	10.6	10.6	3.54	3.91	4.29	29
013		-	-	-	-	-	-	-	-	-	-	-	-	9.46	10.4	4.14	4.55	4.96	37	13.7	13.7	4.80	5.21	5.68	26	14.6	14.6	4.85	5.26	5.68	22

Значения для типоразмеров 007-7 относятся к однофазным агрегатам, значения для типоразмеров 007-9 относятся к трехфазным агрегатам

Легенда:

LWT CAP Integr. kW CAP Inst. kW Температура выходящей воды Комплексная теплопроизводительность (кВт)

Номинальная теплопроизводительность нетто (мгновенная

производительность) = теплопроизводительность брутто минус производительность при возможном давлении (расход х давление/0,3) (кВт)

COMP kW

Мощность, потребляемая компрессором Мощность, потребляемая агрегатом (компрессоры, UNIT kW

вентиляторы, система управления и насосы) минус производительность при возможном давлении (расход х

давление/0,3)

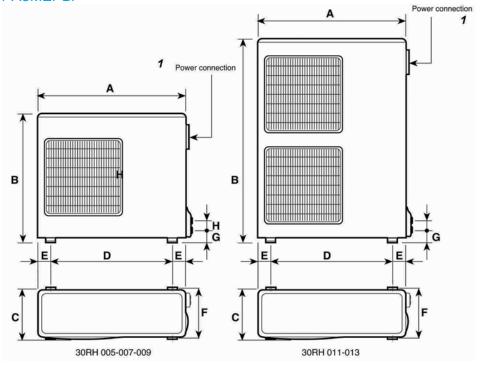
COND I/s PRES κPa Расход воды через конденсатор (л/с)

Возможное давление на выходе агрегата (агрегат с гидравлическим модулем с однопоточным насосом)

Производительность при стандартных условиях EUROVENT

Представленные рабочие характеристики могут иметь следующие допуски согласно EUROVENT: На теплопроизводительность: - 5 %На холодопроизводительность: + 5 % На падение давления: + 15 %

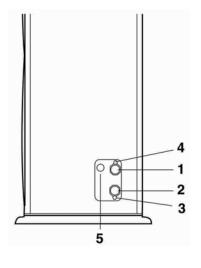
Поправочные коэффициенты при полной нагрузке при проведении


лабораторных испытаний согласно Eurovent: Теплопроизводительность нетто Коэффициент энергетического кпд 1.000 1.000 Падение давления в теплообменнике 1.000

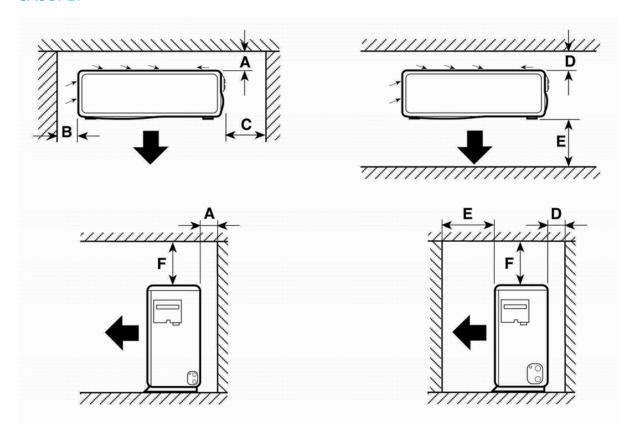
Данные о применении:

Холодильный агент: R-410C Повышение температуры в конденсаторе: 5К

Жидкость конденсатора: вода Степень загрязнения: 0,000044 м² К/Вт


РАЗМЕРЫ

Подключение электропитания


30RH		005	007	009	011	013
Α	MM	800	800	800	800	800
В	MM	803	803	803	1264	1264
С	MM	300	300	300	300	300
D	MM	508	508	508	508	508
E	MM	146	146	146	146	146
F	MM	330	330	330	330	330
G	MM	97	97	97	97	97

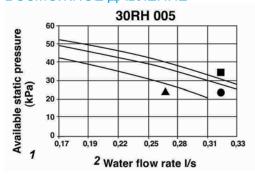
ПОДКЛЮЧЕНИЯ ВОДЯНЫХ ПАТРУБКОВ

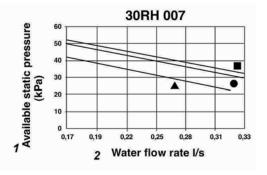
- 1 2 3 4 5
- Впуск воды в агрегат, внутренняя резьба диаметром 1" Выпуск воды из агрегата, внутренняя резьба диаметром 1" Слив Продувка воздухом Предохранительный клапан в линии слива, внутренняя резьба диаметром 1"

ЗАЗОРЫ

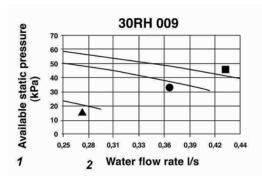
30RH		005-013	
Α	ММ	100	
В	MM	250	
С	MM	500	
D	MM	100	
E	MM	670	
F	MM	400	

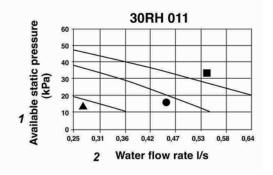
РАСХОД И ОБЪЕМ ВОДЫ В СИСТЕМЕ

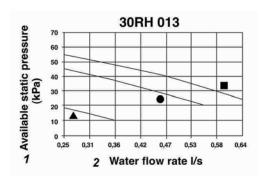

30RH	•	005	007	009	Oil	013
Номинальный расход воды	л/с	0.24	0.30	0.34	0.46	0.55
Объем воды в системе	л	•	•	•	•	•
Минимум*		17	22	27	32	41
Максимум		30	30	65	65	65


^{*} Если количество воды ниже указанной величины, необходимо использовать буферный бак

УРОВНИ ЗВУКОВОГО ДАВЛЕНИЯ (дБ)


30RH	125 Hz	250 Hz	500 Hz	z500 Hz	z500 Hz	4000 Hz	8000 Hz	dB(A)
005	66	62	60	58	53	48	43	62
007	74	67	64	63	57	52	44	67
009	75	70	69	67	62	56	49	71
011	76	72	68	66	62	57	50	71
013	78	72	70	69	65	60	54	73


ВОЗМОЖНОЕ ДАВЛЕНИЕ



- 1. 2. Возможное статическое давление (кПа)
- Расход воды (л/с)

- Возможное статическое давление (кПа)
- Расход воды (л/с)

- Возможное статическое давление (кПа)
- Расход воды (л/с)

- Пегенда
 Высокая частота вращения III
 Средняя частота вращения II
 Низкая частота вращения I
 Температура воды 20 °C

