

INSTALLATION, OPERATING AND MAINTENANCE INSTRUCTIONS

Variable speed twin-screw liquid chillers

30KAV 500 - 1100 30KAVP 500 - 1100

Nominal cooling capacity: 493 - 1079 kW - 50 Hz

CONTENTS

1 - INTRODUCTION	
1.1 - Safety considerations related to protection devices	
1.2 - Refrigerant safety considerations	
1.3 - Installation safety considerations	
1.4 - Maintenance safety considerations 5 - Safety considerations during system operations	8
2 - RECEIPT OF GOODS	
2.1 - Checking the equipment received	10
3 - HANDLING AND POSITIONING	11
3.1 - Handling	
3.2 - Positioning	
4 - DIMENSIONS, CLEARANCES	42
4.1 - 30KAV 500 & 550, without hydraulic module	
4.2 - 30KAV 500 & 550, with bydraulic module	
4.3 - 30KAV 600 & 650, without hydraulic module	
4.4 - 30KAV 600 & 650, with hydraulic module	
4.5 - 30KAV 500, 550, 600 & 650 opt. 119; & 30KAV 720 & 800; without hydraulic module 30KAVP 500, 550, 600, 650;	
without hydraulic module	14
4.6 - 30KAV 500, 550, 600 & 650 opt. 119; & 30KAV 720 & 800; with hydraulic module 30KAVP 500, 550, 600, 650; with hydraulic module	1.1
4.7 - 30KAV 720 opt. 119; & 30KAV 900 & 1000; without hydraulic module 30KAVP 720; without hydraulic module	
4.8 - 30KAV 720 opt. 119, & 50KAV 900 & 1000, without hydraulic module 50KAVP 720, without hydraulic module	
4.9 - 30KAV 800 & 900 opt. 119; & 30KAV 1100, without hydraulic module 30KAVP 800, 900; without hydraulic module	
4.10 - 30KAV 800 opt.119, with hydraulic module 30KAVP 800; with hydraulic module	
4.11 - 30KAV 1000 & 1100 opt. 119 30KAVP 1000 & 1100	
4.12 - Installation of multiple chillers	
4.13 - Proximity to walls	
4.14 - Underneath a roof	17
5 - PHYSICAL AND ELECTRICAL DATA FOR 30KAV/30KAVP UNITS	18
5.1 - Physical data	
5.2 - Electrical data	
5.3 - Short circuit current withstand capability for all units	
5.4 - Electrical data, optional hydraulic module	
5.5 - Compressor usage per circuit (A, B)	25
6 - ELECTRICAL CONNECTION	27
6.1 - Power supply	
6.2 - Voltage phase imbalance (%)	27
6.3 - Power connection/disconnect switch	
6.4 - Recommended cable sections	
6.5 - Power cable access routing	
6.6 - Field control wiring	
6.7 - Customer and service power reserves	28
7 - APPLICATION DATA	
7.1 - Unit operating range	
7.2 - Minimum chilled water flow (units without hydraulic module)	
7.3 - Maximum chilled water flow (units without hydraulic module)	
7.4 - Variable flow evaporator	
7.5 - System minimum water volume	
7.7 - Evaporator water flow rate	
7.8 - Evaporator pressure drop curves	
·	
8 - WATER CONNECTIONS	
8.1 - Operating precautions	
8.3 - Tightening the screws on the evaporator water boxes	
8.4 - Flow rate detection	
8.5 - Frost protection	
8.6 - Protection against cavitation (with option 116)	
8.7 - Adjusting the installation nominal water flow rate	35
8.8 - Operation of two units as a master/slave pair (option 58)	38
9 - UNIT WITH HYDRAULIC KIT	39
9.1 - Available static pressure for the system	
9.2 - Required NPSH (Net Positive Suction Head); Hydraulic module option	40
9.3 - Flow rate calculation	

CONTENTS

10 - SYSTEM START-UP	41
10.1 - Checks before system start-up	41
10.2 - Commissioning	
10.3 - Essential points to check	42
11 - MAJOR SYSTEM COMPONENTS AND OPERATION DATA	43
11.1 - Compressors	
11.2 - Oil filter	
11.3 - Refrigerant	
11.4 - Lubricant	
11.5 - Oil supply solenoid valve	
11.6 - Economiser and suction filters	
11.7 - Pressure vessels	
11.8 - High Pressure SRMCR safety loop	
11.9 - Condensers	
11.10 - Fans	45
11.11 - Electronic expansion valve (EXV)	
11.12 - Moisture indicator	46
11.13 - Dehumidifier filter	46
11.14 - Sensors	
11.15 - Service valves (option 92)	46
11.16 - Variable speed drive	46
11.17 - Cabinets for the electrical equipment	47
12 - OPTIONS	48
12.1 - Unit operation with a free cooling drycooler	
12.2 - Brine Options	52
12.3 - Heat recovery (Option 49/Option 50)	53
13 - STANDARD MAINTENANCE	
13.1 - Level 1 maintenance	
13.2 - Level 2 maintenance	
13.3 - Level 3 (or higher) maintenance	
13.5 - Tightening torques for the main fastenings	
13.7 - Evaporator maintenance	
13.8 - Compressor maintenance	
13.9 - Variable frequency drive maintenance	
13.10 - Precautions when fitting the casing panel to the side of the control cabinet	
13.11 - Periodic test of the High Pressure safety loop	
14 - FINAL SHUT-DOWN	
14.1 - Shutting down	
14.1 - Strutting down	
14.3 - Fluids to be recovered for treatment	
14.4 - Materials to be recovered for recycling	63
14.5 - Waste electrical and electronic equipment (WEEE)	
15 - UNIT START-UP CHECKLIST FOR INSTALLERS PRIOR TO CONTACTING CARRIER SERVICE	
16 - APPENDICES (PROVIDED IN THE DOCUMENT WALLET WITH THE INSTRUCTION MANUAL)	
16.1 - Appendix 1: Declaration of conformity	
16.2 - Appendix 2: Wiring diagram	
16.3 - Appendix 3: Machine PID	
16.4 - Appendix 4: Dimensional drawings	67

The images used on the cover page and within this document are solely for illustration and are not contractually binding. The manufacturer reserves the right to change the design at any time without notice.

The units are intended to cool water for building air conditioning or for industrial processes.

They are designed to provide a very high level of safety and reliability, making installation, start-up, operation and maintenance easier and safer.

They will provide safe and reliable service if used within their application ranges.

They are designed to offer a service life of 15 years, assuming a utilisation factor of 75%, which corresponds to approximately 100,000 operating hours.

Prior to the initial start-up of the units, everyone involved in the works should be thoroughly familiar with these instructions and with the characteristics of the installation site, and ensure these are respected.

The procedures in this manual are arranged in the sequence required for installation, start-up, operation and maintenance of the units. Ensure that you follow them and that you take the required safety precautions, including those listed in this guide, which include wearing personal protective equipment (gloves, safety glasses, safety shoes) and having the appropriate tools, skills and qualifications (electrical, air conditioning, local legislation).

To find out if these products comply with European directives (machine safety, low voltage, electromagnetic compatibility, pressure equipment, etc.) check the declarations of conformity for these products.

1.1 - Safety considerations related to protection devices

An internal fault with the compressor variable frequency drive can cause serious injury if the variable frequency drive has not been closed correctly: it is essential to ensure that all covers are in place and correctly secured before switching on the power supply to the unit.

Do not obstruct any protective devices:

This applies to any fusible plugs, rupture disks and valves fitted on the refrigerant or energy transfer fluid circuits. Check whether the original protection plugs are still present at the valve outlets. These plugs are generally made of plastic and should not be used. If they are still present, please remove them. Fit devices at the valve or discharge pipe outlets to prevent the penetration of foreign bodies (dust, building debris, etc.) and atmospheric agents (water can form rust or ice). These devices, as well as the discharge piping, must not impair operation and not lead to a pressure drop that is higher than 10% of the set pressure.

Classification and control:

In accordance with the Pressure Equipment Directive and national usage monitoring regulations in the European Union, the protective devices fitted to these machines are classified as follows:

	Safety device ⁽¹⁾	Device for limitation of damage in the event of an external fire ⁽²⁾
Refrigerant side		
High pressure safety loop ⁽³⁾	Х	
External relief valve(4)		Х
Rupture disk		X
Heat transfer fluid side		
External relief valve	(5)	(5)

- Classified for protection in normal service situations.
- (2) Classified for protection in abnormal service situations. These devices are sized for fires with a thermal flow of 10kW/m². No combustible matter should be placed within 6.5m of the unit.
- (3) High Pressure safety loop = SRMCR as described in section 11.8 and on the wiring diagram.
- (4) The instantaneous overpressure limitation of 10% of the operating pressure does not apply to this abnormal service situation.
 - The control pressure can be higher than the operating pressure. In this case, either the design temperature or the high pressure switch ensures that the operating pressure is not exceeded in normal service situations.
- (5) The selection of these relief valves must be made by the personnel responsible for completing the hydraulic installation.

In compliance with the European Pressure Equipment Directive (PED) and national regulations relating to design:

- These valves are not safety devices but accessories which limit damage in the event of a fire,
- The safety device is the high pressure safety loop described in section 11.8.

Do not remove valves/fusible plugs, even if the fire risk is under control for a particular installation. There is no guarantee that the accessories have been re-installed if the system is changed or for transport with a gas charge.

When the unit is subjected to fire, a safety device prevents rupture due to over-pressure by releasing the refrigerant. The fluid may then break down into toxic residues when in contact with flames:

- Stay away from the unit;
- Ensure the personnel in charge of extinguishing the fire are duly warned and issued with recommendations;
- Fire extinguishers appropriate to the system and the refrigerant type must be easily accessible.

All factory-fitted relief valves are lead-sealed to prevent any calibration change.

The external relief valves must always be vented to outside if the units are installed in a closed space. Refer to the installation regulations, for example those of European standard EN 378 and EN 13136. These pipes must be installed in a way that ensures that people and property are not exposed to vented refrigerant. As the fluids can be diffused in the air, ensure that refrigerant is discharged away from building air intakes, relief valves must be checked periodically. The valves must be checked periodically.

If the relief valves are factory-fitted on a changeover valve, this is equipped with a relief valve on each of the two outlets. Only one of the two relief valves is in operation, the other one is isolated. Never leave the changeover valve in the intermediate position, i.e. with both circuits open (move the lever fully forwards or backwards depending on the output to be isolated). If a valve is removed for checking or replacement, make sure there is still a valve active on each of the changeover valves installed on the unit.

Provide a drain in the drain pipe, close to each relief valve, to avoid an accumulation of condensate or rain water.

It is recommended to install an indicating device to check whether any refrigerant has leaked from the relief valve.

The presence of oil at the outlet orifice is a useful indicator that refrigerant has leaked. Keep this orifice clean to ensure that any leaks are obvious. The calibration of a valve that has leaked is generally lower than its original calibration. The new calibration may affect the operating range. To avoid nuisance tripping or leaks, replace or re-calibrate the valve.

Protective device checks:

- External overpressure devices (external relief valves) must be replaced or checked to ensure that their settings and operation are correct at least every five years or in accordance with national regulations, at the earliest opportunity.
- The high pressure (SRMCR) safety loop must be tested at least once a year to check it is operating correctly; this must include the compressor shut-down and its activation and deactivation values.

The company or organisation that conducts a pressure switch test must establish and implement detailed procedures for:

- Safety measures,
- Measuring equipment,
- Values and tolerances for cut-off and discharge devices,
- Test stages,
- Recommissioning of the equipment.

The manufacturer recommends contacting the Service department for this type of test. An example of the test procedure without removing the pressure switch is given in section 13.11 of this manual.

WARNING: If the test results in the replacement of the pressure switch, it is necessary to recover the refrigerant charge; these pressure switches are not installed on Schraeder type automatic valves.

If the machine operates in a corrosive environment, inspect the protection devices more frequently.

Do not attempt to repair or recondition a valve if there has been any corrosion or build-up of foreign material (rust, dirt, scale, etc.) on the valve body or mechanism. In this case, it must be replaced.

Do not install relief valves in series or backwards.

1.2 - Refrigerant safety considerations

Use safety goggles and safety gloves.

All precautions concerning handling of refrigerant must be observed in accordance with local regulations.

If a leak occurs or if the refrigerant becomes contaminated (e.g. by a short circuit in a motor), and before any intervention, remove the complete charge using a recovery unit and store the refrigerant in mobile containers. The compressors cannot transfer the whole refrigerant charge and can be damaged if used to pump-down. The refrigerant charge should not be transferred to the high-pressure side.

Detect and repair the leak, check the type of refrigerant in the machine and then recharge the machine/circuit with the total charge, as indicated on the unit nameplate. Do not top up the refrigerant charge. Only charge the liquid refrigerant given on the nameplate at the liquid line.

Charging any refrigerant other than the original type will impair machine operation and can even cause irreparable damage to the compressors. The compressors operating with this refrigerant type are lubricated with a synthetic polyolester oil. Do not unweld the refrigerant pipework or any refrigerant circuit component or cut these with a torch until all refrigerant (liquid and vapour) as well as the oil have been removed from the unit. Traces of vapour should be displaced with dry nitrogen. Refrigerant in contact with an open flame produces toxic gases.

Do not siphon refrigerant.

Any accidental release of refrigerant, whether this is caused by a small leak or significant discharges following the rupture of a pipe or an unexpected release from a relief valve, may cause any personnel exposed to experience heart palpitations, faintness, frostbite and burns. Always take any such event seriously.

Installers, owners and especially service engineers for these units must:

- Create a procedure to ensure medical attention is sought before treating any symptoms;
- Provide first aid equipment, flush the eyes and skin immediately if splashed with refrigerant, and seek medical attention.

We recommend that standard EN 378-3 Annex 3 is applied.

Ensure there is sufficient ventilation if the unit is installed in an enclosed area. In gas form, refrigerant is heavier than air and, if allowed to accumulate in a confined area, it can reduce the quantity of oxygen in the air, causing respiratory issues.

The refrigerant used in the units in this range is R134a.

Special equipment must be used when working on the refrigerant circuit (pressure gauge, charge transfer equipment, etc.).

Do not clean the unit with hot water or steam. This may cause the refrigerant pressure to rise.

NOTE: If a liquid line valve is present, never leave refrigerant in liquid form between this closed valve and the expansion valve as the change in temperature may cause the liquid to expand, rupturing this section of the circuit. This valve is situated on the liquid line before the filter drier.

Never apply an open flame or pressurised steam to a refrigerant container. Dangerous overpressure can result. If it is necessary to heat the refrigerant, only use hot water.

The standard NF E29-795 describes the regulations permitting conditioning and recovery of halogenated hydrocarbons under optimum quality conditions for the products and optimum safety conditions for people, property and the environment. If any damage is caused to the equipment, the refrigerant must be changed in accordance with this standard, or an analysis of the fluid must be performed by a specialist laboratory.

Any refrigerant transfer and recovery operations must be carried out using a transfer unit.

Service valves are positioned on the liquid, suction and discharge lines and are available on all units for connection to the transfer unit.

The units must never be modified to add refrigerant and oil charging, removal and purging devices. These units have the required openings. Refer to the certified dimensional drawings.

It is dangerous and illegal to re-use disposable (non-returnable) cylinders or attempt to refill them. When the cylinders are empty, evacuate the remaining gas pressure, fill out the relevant paperwork and hand them over to an approved recovery agency. Do not incinerate.

OPERATING CHECKS:

- Important: This product contains fluorinated greenhouse gas covered by the Kyoto protocol.
- Type of fluid: refer to the nameplate.
- Global Warming Potential (GWP): refer to the table below.

WARNING:

- 1. All interventions on this product's refrigerant circuit must be performed in accordance with applicable legislation. Within the European Union, this legislation notably includes regulation No. 517/2014, known as F-Gas.
- Ensure that the refrigerant is never released to the atmosphere during installation, maintenance or equipment disposal.
- 3. It is prohibited to deliberately release refrigerant into the atmosphere.
- 4. If a refrigerant leak is detected, ensure that the leak is repaired quickly.
- 5. Only certified, qualified personnel are permitted to install, service and perform leak tightness tests on the refrigerant circuit, decommission the equipment and recover the refrigerant.
- 6. The operator must ensure that any refrigerant recovered is recycled, regenerated or destroyed.
- 7. The operator is bound by the obligation to perform leak tightness tests, or have these performed, at regular intervals. Regulations within the European Union have set the following intervals:

	WITHOUT detection	No test	No test 12 months		3 months						
System V leakage o		No test	24 months	12 months	6 months						
Refrigera charge p (equivale	er circuit	< 5 tonnes	5 ≤ charge < 50 tonnes	50 ≤ charge < 500 tons	Charge > 500 tonnes*						
e ber	R134a (GWP 1430)	Charge < 3.5 kg	3.5 ≤ charge < 34.9 kg	34.9 ≤ charge < 349.7 kg	charge > 349.7 kg						
ıt chargo ıit (kg)	R407C (GWP 1774)	Charge < 2.8 kg	2.8 ≤ charge < 28.2 kg	28.2 ≤ charge < 281.9 kg	charge > 281.9 kg						
Refrigerant charge circuit (kg)	R410A (GWP 2088)	Charge < 2.4 kg	2.4 ≤ charge < 23.9 kg	23.9 ≤ charge < 239.5 kg	charge > 239.5 kg						
Re	HFOs: R1234ze		No requirement								

- * From 01/01/2017, units must be equipped with a leak detection system.
- 8. For all equipment subject to regular leak tightness tests, the operator must keep a log used to record the following: the quantities and types of fluids contained in the system (added and recovered), the quantity of fluid recycled, regenerated or destroyed, the date and results of the leak tightness tests, the details of the technician and of the company performing the work, etc.
- Contact your local dealer or installer if you have any questions.

Information on operating inspections given in EN 378 standard can be used when similar criteria do not exist in the national regulation.

Check regularly for leaks and repair immediately.

1.3 - Installation safety considerations

After the unit has been received, and before it is started up, it must be inspected for damage. Check that the refrigerant circuits are intact, especially that no components or pipes have shifted or been damaged (e.g. following a shock). If in doubt, carry out a leak tightness check.

Pressure equipment and components

These products include pressure equipment or components manufactured by the unit manufacturer or by other manufacturers. We recommend that you contact your professional body to find out which regulations affect you as the operator or owner of pressure equipment or components (declaration, re-qualification, re-testing). The characteristics of this equipment/these components are given on the nameplate or in the required documentation, supplied with the products.

These units comply with the European Pressure Equipment Directive.

The units are intended to be stored and operated in an environment where the ambient temperature does not drop below the minimum allowable temperature indicated on the nameplate.

Do not introduce significant static or dynamic pressure with regard to the operating pressures used during operation or for tests in the refrigerant circuit or in the heat exchange circuits.

NOTE: Monitoring during operation, re-qualification, re-testing, exemption from retesting:

- Follow the regulations on monitoring pressure equipment.
- The user or operator is usually required to create and maintain a monitoring and maintenance log.
- In the absence of any regulations, or in addition to the regulations, follow the guidance in EN 378.
- Follow the local professional recommendations, whenever they exist.
- Regularly monitor the surface of the components to detect pitting corrosion. To do this check an uninsulated part of the pressure vessel or at a joint in the insulation.
- Regularly check for the presence of any impurities (e.g. sand, grit) in the heat transfer fluids. These impurities can cause wear and/or pitting corrosion.
- Filter the heat-transfer fluid and carry out internal inspections as described in EN 378
- The reports of the periodical checks by the user or the operator must be included in the monitoring and maintenance log.

Repair:

Any repair or modification, including replacement of removable parts:

- Must comply with local regulations and must be performed by qualified operators in accordance with qualified processes, including changing a wiring harness conductor.
- Must be approved by the original manufacturer. Repairs and modifications which involve a permanent assembly (welding, soldering, expansion of tubes, etc.) must be performed by qualified operators following operating procedures,
- All modifications and repairs must be listed in the monitoring and maintenance register,
- Never attempt to repair or modify a plate heat exchanger.

Recycling:

 The pressure equipment can be recycled in whole or in part. After use they may contain refrigerant vapours and oil residue. Some parts are painted.

1.4 - Maintenance safety considerations

It is compulsory to wear ear protection when working near the unit and the unit is in operation.

The manufacturer recommends the following template for the maintenance log (the table below is only given as a guide and does not engage the manufacturer's liability).

Ope	ration	Name of the	Applicable national	Verification
Date	Nature ⁽¹⁾	commissioning engineer	regulations	organisation

(1) Maintenance

Any technician carrying out work on the electrical or refrigerating section must be authorised, with the relevant qualifications and certifications, including for brazing operations and for operation of the shut-off valve. He/she must have been specifically trained on this equipment and system.

The manual valves must only be manipulated when the machine is off. Do not forget to refit protective caps to prevent leaks.

Technicians working on the units must be equipped as follows:

Personal protective	Operations								
equipment (PPE) (1)	Handling	Maintenance, service	Welding or brazing (2)						
Protective gloves, eye protection, safety shoes, protective clothing.	×	×	х						
Ear protection.		X	Х						
Filtering respirator.			Х						

- (1) We recommend compliance with the instructions in the EN 378-3 standard.
- (2) Performed in the presence of A1 refrigerant according to EN 378-1.

Never work on a unit that is still energised.

Never work on any of the electrical components until the general power supply to the unit has been isolated and locked out.

WARNING: Even if the unit has been switched off, the power circuit remains energised, unless the unit or circuit disconnect switch is open. Refer to the wiring diagram for further details. Follow the appropriate safety guidelines. When working close to the condenser fans, particularly when removing the grilles, ensure the power supply to the fans is switched off to ensure they cannot run.

WARNING: The variable frequency drives (VFD) fitted to the units have circuit capacitors which take twenty (20) minutes to discharge after the power supply is disconnected. After disconnecting the power supply to the electrical box, wait for twenty minutes before accessing the electrical box or variable drives

This value is a guide, and may differ from one VFD to another: refer to the information given on the VFD to find out the precise value.

Before any intervention, verify that there is no voltage present on any accessible conducting parts of the power circuit.

Regularly check that the vibration levels remain acceptable and close to those at initial machine start-up.

Before opening a refrigerant circuit, drain and consult the pressure indicators.

If the refrigerant circuit remains open after an intervention (such as a component replacement, etc.):

- Seal the openings if the duration is less than a day
- Beyond this time, charge the circuit with a dry, inert gas (nitrogen).

The objective is to prevent penetration of atmospheric humidity and the resulting corrosion of the unprotected internal steel walls.

WARNING: the compressors on 30KAVP units feature motors with permanent magnets. Do not open the compressor. Ensure that the terminal box is securely fixed in place before filling the machine with refrigerant, draining the refrigerant or rotating the motor shaft. The compressor cannot be removed.

WARNING: strong magnetic field inside the compressor casing. An electrical current may be generated on the compressor terminals and on the circuits which are connected when filling/emptying the refrigerant.

1.5 - Safety considerations during system interventions

To prevent any damage or accidents, trained personnel must service the various parts of this machine and must resolve any malfunctions or leaks immediately.

Comply with the regulations and recommendations given in the safety standards for refrigerant systems and machines, such as: EN 378, ISO 5149, etc.

RISK OF EXPLOSION:

Never use air or gases containing oxygen during leak tests, to purge pipework or to pressurise a unit. Pressurised air mixtures or gases containing oxygen can be the cause of an explosion. Oxygen reacts violently with oil and grease.

Only use dry nitrogen for leak tests, with an appropriate tracer gas if necessary.

Failure to observe the above recommendations can have serious or even fatal consequences and damage installations.

Never exceed the specified maximum operating pressures. Verify the maximum permissible high and low test pressures by checking the instructions in this manual or the pressures given on the unit nameplate.

The necessary protective equipment must be available, and appropriate fire extinguishers for the system and the refrigerant type used must be within easy reach.

Do not attempt to remove refrigerant circuit components or fittings, while the machine is under pressure or while it is running. Make sure the circuit pressure is zero and that the unit has been shut down and de-energised before removing components or opening a circuit. When the refrigerant circuit is opened to repair, see the recommendations in chapter "Maintenance safety considerations".

WARNING: No part of the unit must be used as a walkway, rack or support. Periodically check and repair or, if necessary, replace any component or piping that shows signs of damage.

The refrigerant lines can break under the weight and release refrigerant, causing personal injury.

Do not climb on a machine. Use a platform to work at height.

Use mechanical lifting equipment (crane, hoist, winch, etc.) to lift or move heavy components.

For lighter components, use lifting equipment if there is any risk of slipping or losing your balance.

Use only original replacement parts for any repair or component replacement. Consult the list of replacement parts that corresponds to the original equipment.

Do not drain the heat exchange fluid circuit without informing the site technical / service department or other competent body first.

Close the shut-off valves on the water inlet and outlet and drain the unit's hydraulic circuit before working on the components installed on the circuit (screen filter, pump, water flow sensor, etc.).

Periodically inspect all valves, fittings and pipes on the refrigerant and hydraulic circuits to ensure that they do not show any signs of corrosion or leaks.

2.1 - Checking the equipment received

Check that the unit and the accessories have not been damaged during transport and that no parts are missing. If the unit and the accessories have been damaged or the shipment is incomplete, send a claim to the shipping company.

Compare the name plate data with the order.

The name plate is attached in two places to the unit:

- On the outside of one of the unit frames,
- On the electrical cabinet, inside.

The unit name plate must include the following information:

- Model number size,
- CE marking,
- Serial number,
- Year of manufacture and pressure and leak tightness test date,
- Fluid used for transport,
- Refrigerant used,
- Refrigerant charge per circuit,
- PS: Min./max. allowable pressure (high and low pressure side),
- TS: Min./max. allowable temperature (high and low pressure side),
- Pressure switch cut-out pressure,
- Unit leak test pressure,
- Voltage, frequency, number of phases,
- Maximum current,
- Maximum power input,
- Unit net weight.

3.1 - Handling

It is strongly recommended that a specialised company is employed to unload the machine.

Do not remove the skid or the packaging until the unit is in its final position.

These units can be safely moved by trained personnel with a fork lift truck with the correct capacity for the dimensions and weight of the unit, as long as the forks are positioned in the location and direction shown on the unit.

The units can also be lifted with slings, using only the designated lifting points marked on the unit (labels on the chassis and label with the unit handling instructions, attached to the unit).

Use slings with the correct capacity, and follow the lifting instructions on the certified dimensional drawings supplied for the unit.

WARNING: Only attach slings to the designated lifting points which are marked on the unit.

It is advisable to protect coils against crushing while a unit is being moved. Use struts or a lifting beam to spread the slings above the unit. Do not tilt a unit more than 15°.

Safety can only be guaranteed if these instructions are carefully followed. Failure to do so may result in damage to the equipment and physical injury.

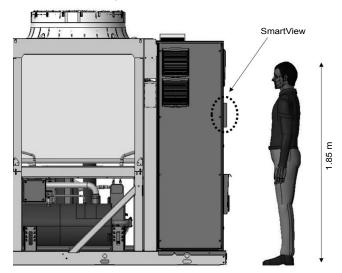
See the slinging plan for each machine in section 4 and in appendix 4.

3.2 - Positioning

The machine must be installed in a place that is not accessible to the public and is protected against access by non-authorised persons.

This machine is not intended to operate in an ATEX area.

The machine must be installed outdoors (open space). The volume of air supplied to the condenser coils must not be restricted to ensure the operation of the machine is not adversely affected.

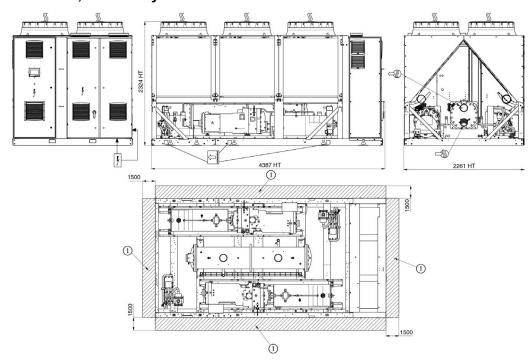

If the unit is to be installed at high level, ensure the machine's surroundings permit easy access for maintenance operations.

For the centre of gravity coordinates, the position of the unit mounting holes, and the weight distribution points, refer to the certified dimensional drawings. Ensure the free space shown in the dimensional drawings is respected to facilitate maintenance and connection.

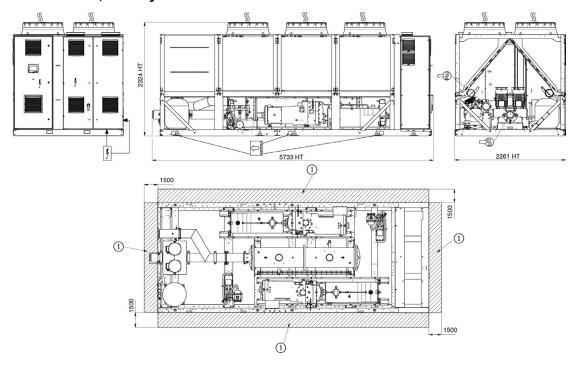
The typical applications of these units are cooling and heating, which do not require earthquake resistance. Earthquake resistance has not been verified.

Before positioning the unit, check that:

- The chosen location can support the weight of the unit, or that appropriate reinforcement measures have been taken,
- The unit is installed level on an even surface (maximum tolerance is 5 mm along both axes),
- If the support structure is sensitive to vibration and/or noise transmission it is advisable to insert anti-vibration mounts (elastomer mounts or metal springs) between the unit and the structure. Selection of these devices is based on the system characteristics and the comfort level required and should be made by technical specialists,
- There is adequate space above and around the unit for air to circulate and for access to the components (see dimensional drawings),
- The number of support points is adequate and that they are in the right places,
- If the optional anti-vibration mounts are present, their number and position must comply with the indications given on the certified dimensional drawing.,
- The location is not subject to flooding,
- For outdoor applications, avoid installing the unit in a location where snow is likely to accumulate (in areas subject to long periods of sub-zero temperatures, the unit should be raised),
- Baffles may be necessary to deflect strong winds. However, they must not restrict air flow into the unit,
- Position of the operator workstation.



CAUTION: Before lifting the unit, check that all casing panels and grilles are securely fixed in place. Lift and set down the unit with great care. Tilting and jarring can damage the unit.


WARNING: never apply pressure or leverage to any of the unit's panels or uprights; only the base of the unit frame is designed to withstand such stresses. No force or effort must be applied to pressurised parts, especially via pipes connected to the water-cooled heat exchanger (with or without the hydraulic module if the unit is equipped with this).

All welding operations (connection to the hydraulic network) must be performed by qualified welders. The Victaulic® connection or the counter-flange must be removed before welding as a matter of course.

4.1 - 30KAV 500 & 550, without hydraulic module

4.2 - 30KAV 500 & 550, with hydraulic module

Key

All dimensions are given in mm

(1) Clearances required for maintenance (see Note)

Water inlet for standard units

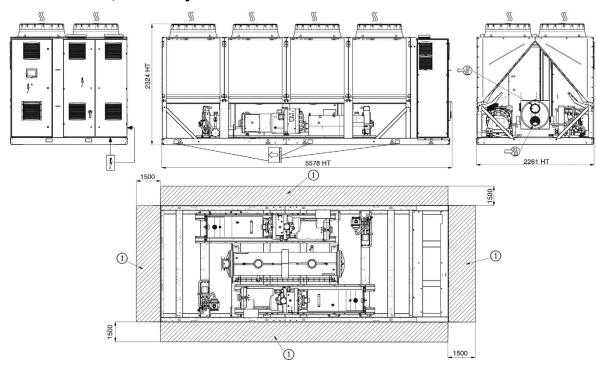
Water outlet for standard units

Air outlet, do not obstruct

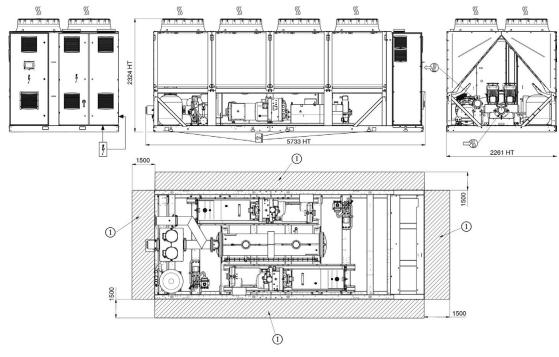
Power supply connection

Sling points

NOTE:


Non-contractual drawings.

Refer to the unit name plate to find out the machine weight. Refer to the certified dimensional drawings (appendix 4), provided with the unit or available on request, when


provided with the unit or available on request, when designing an installation.

Please refer to the certified dimensional drawings (appendix 4) for the positioning of the fixing points, weight distribution points and centre of gravity coordinates.

4.3 - 30KAV 600 & 650, without hydraulic module

4.4 - 30KAV 600 & 650, with hydraulic module

Key

All dimensions are given in mm

Clearances required for maintenance (see Note)

Water inlet for standard units

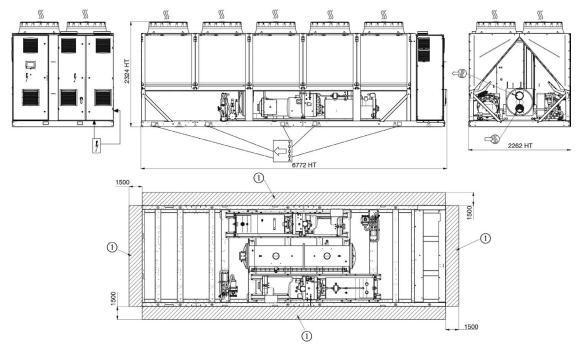
₩ Water outlet for standard units

Air outlet, do not obstruct

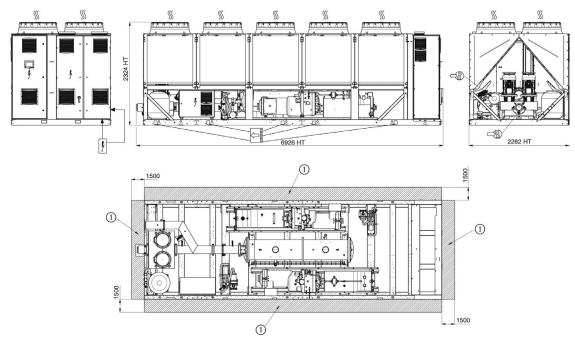
Power supply connection

⇔ Sling points

NOTE:


Non-contractual drawings.

Refer to the unit name plate to find out the machine weight.


Refer to the certified dimensional drawings (appendix 4), provided with the unit or available on request, when designing an installation.

Please refer to the certified dimensional drawings (appendix 4) for the positioning of the fixing points, weight distribution points and centre of gravity coordinates.

4.5 - 30KAV 500, 550, 600 & 650 opt. 119; & 30KAV 720 & 800; without hydraulic module 30KAVP 500, 550, 600, 650; without hydraulic module

4.6 - 30KAV 500, 550, 600 & 650 opt. 119; & 30KAV 720 & 800; with hydraulic module 30KAVP 500, 550, 600, 650; with hydraulic module

Key

All dimensions are given in mm

(1) Clearances required for maintenance (see Note)

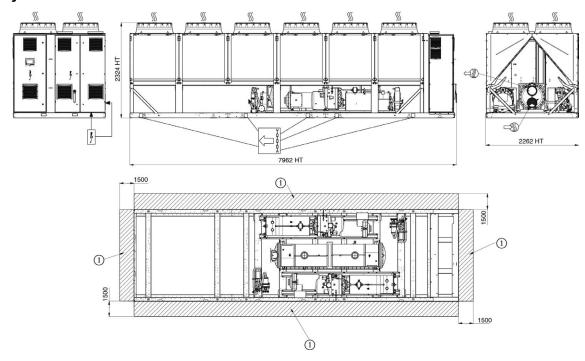
Water inlet for standard units

Water outlet for standard units

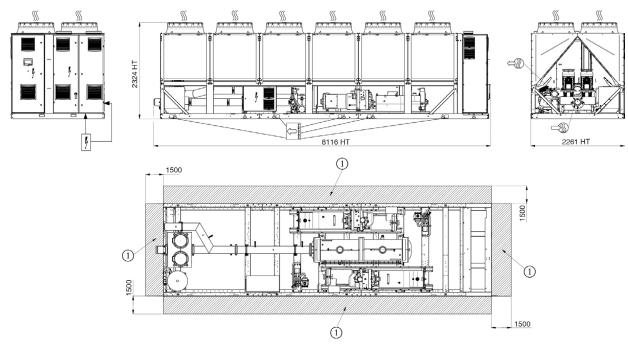
Air outlet, do not obstruct

Power supply connection

NOTE:


Non-contractual drawings.

Refer to the unit name plate to find out the machine weight.


Refer to the certified dimensional drawings (appendix 4), provided with the unit or available on request, when designing an installation.

Please refer to the certified dimensional drawings (appendix 4) for the positioning of the fixing points, weight distribution points and centre of gravity coordinates.

4.7 - 30KAV 720 opt. 119; & 30KAV 900 & 1000; without hydraulic module 30KAVP 720; without hydraulic module

4.8 - 30KAV 720 opt. 119, with hydraulic module 30KAVP 720; with hydraulic module

Key

All dimensions are given in mm

Clearances required for maintenance (see Note) (1)

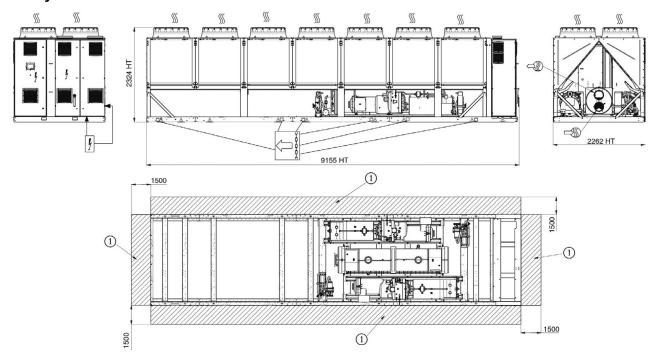
Water inlet for standard units

Water outlet for standard units Air outlet, do not obstruct

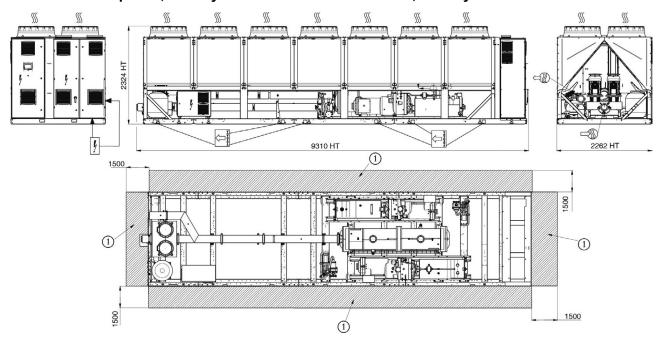
Power supply connection

Sling points

NOTE:


Non-contractual drawings.

Refer to the unit name plate to find out the machine weight.


Refer to the certified dimensional drawings (appendix 4), provided with the unit or available on request, when designing an installation.

Please refer to the certified dimensional drawings (appendix 4) for the positioning of the fixing points, weight distribution points and centre of gravity coordinates.

$4.9\,$ - $\,30\text{KAV}$ 800 & 900 opt. 119; & 30KAV 1100, without hydraulic module $\,30\text{KAVP}$ $800,\,900;$ without hydraulic module

4.10 - 30KAV 800 opt.119, with hydraulic module 30KAVP 800; with hydraulic module

Key

All dimensions are given in mm

(1) Clearances required for maintenance (see Note)

Water inlet for standard units

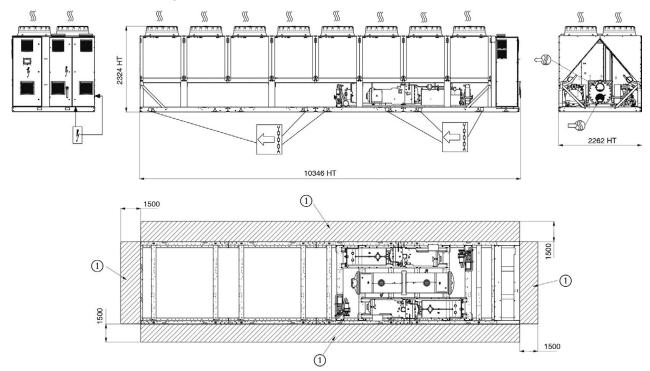
Water outlet for standard units

Air outlet, do not obstruct

Power supply connection

⇔
 Sling points

NOTE:


Non-contractual drawings.

Refer to the unit name plate to find out the machine weight.

Refer to the certified dimensional drawings (appendix 4), provided with the unit or available on request, when designing an installation.

Please refer to the certified dimensional drawings (appendix 4) for the positioning of the fixing points, weight distribution points and centre of gravity coordinates.

4.11 - 30KAV 1000 & 1100 opt. 119 30KAVP 1000 & 1100

Key

All dimensions are given in mm

(1) Clearances required for maintenance (see Note)

Water inlet for standard units

Water outlet for standard units

111

Air outlet, do not obstruct

Power supply connection

..,

Sling points

4.12 - Installation of multiple chillers

It is recommended that multiple chillers are installed in a single row, arranged as shown in the example below, to avoid warm air being recycled from one unit to another.

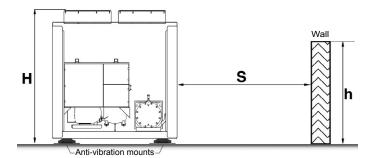
If the floor space does not allow this arrangement, contact your Carrier distributor to assess the various installation options.

4.13 - Proximity to walls

To guarantee correct operation in most cases:

- If h < H (2.3 m), minimum S = 3 m
- If h > H or S < 3 m, contact your Carrier distributor to assess the various installation options. An accessory (available for sale as a spare part) can be added to the unit in certain situations.

NOTE:


Non-contractual drawings.

Refer to the unit name plate to find out the machine weight.

Refer to the certified dimensional drawings (appendix 4), provided with the unit or available on request, when designing an installation.

Please refer to the certified dimensional drawings (appendix 4) for the positioning of the fixing points, weight distribution points and centre of gravity coordinates.

If the installation comprises several units or if these are located close to walls, refer to sections 4.12 - Installation of multiple chillers and 4.13 - Proximity to walls p. 16 of this manual to determine the space required.

4.14 - Underneath a roof

The upper part of the machine (on top of the fans) must not be covered.

If the floor space requires the machine to be partially covered, contact your Carrier distributor to assess the various installation options.

5.1 - Physical data

30KAV		500	550	600	650	720	800	900	1000	1100
Sound levels			,					,	•	
Standard unit										
Sound power ⁽¹⁾	dB(A)	95	95	96	98	99	98	99	98	100
Sound pressure at 10 m ⁽²⁾	dB(A)	63	63	64	65	66	65	67	65	67
Unit + option 15 ⁽³⁾			•	•						
Sound power ⁽¹⁾	dB(A)	94	94	94	96	97	96	97	97	98
Sound pressure at 10 m ⁽²⁾	dB(A)	62	62	61	64	64	63	65	64	65
Unit + option 15LS(3)								•		
Sound power ⁽¹⁾	dB(A)	90	90	90	92	94	92	94	93	94
Sound pressure at 10 m ⁽²⁾	dB(A)	57	58	58	59	61	60	62	60	61
Dimensions						`				
Standard unit										
Length	mm	4387	4387	5578	5578	6772	6772	7962	7962	9155
Width	mm	2261	2261	2261	2261	2261	2261	2261	2261	2261
Height	mm	2324	2324	2324	2324	2324	2324	2324	2324	2324
Length: Unit + options			•					•		
Options 49/50 (3)	mm	5578	5578	6772	6772	6772	6772	7962	7962	9155
Options 116A/116W (3)	mm	5578	5578	5578	5578	6772	6772	-	-	-
Operating weight ⁽⁴⁾									*	
Standard unit	kg	4779	4792	5167	5180	5643	6085	6526	6991	7399
Unit + option 49 ⁽³⁾	kg	5177	5190	5592	5605	5843	6304	6741	7222	7657
Unit + option 50 ⁽³⁾	kg	5230	5243	5718	5731	5969	6489	6927	7451	7860
Unit + options 116A/116W ⁽³⁾	kg	5291	5405	5592	5618	6223	6644	-	-	-
Compressors			06Z va	riable-sp	eed twin	-screw co	mpresso	or with AC	motor	
Circuit A	Quantity	1	1	1	1	1	1	1	1	1
Circuit B	Quantity	1	1	1	1	1	1	1	1	1
Unit minimum capacity ⁽⁵⁾	%	13	13	13	13	13	13	13	12	12
Refrigerant ⁽⁴⁾ - Standard unit			^-	F	R134a (G	WP=143	0, ODP=	0)	*	
Observation A	kg	52	53	60	63	73	87	98	92	99
Circuit A	tCO ₂ e	74	76	86	90	104	124	140	132	142
Oireacit D	kg	53	54	61	64	74	65	77	93	100
Circuit B	tCO ₂ e	76	77	87	92	106	93	110	133	143
Refrigerant ⁽⁴⁾ - Option 5 ⁽³⁾ (Medium Brine)				F	R134a (G	WP=143	0, ODP=	0)		
Oinself A	kg	57	58	66	69	80	96	108	101	109
Circuit A	tCO ₂ e	82	83	94	99	115	137	154	145	156
Circuit D	kg	58	59	67	70	81	72	85	102	110
Circuit B	tCO ₂ e	83	85	96	101	116	102	121	146	157
Refrigerant ⁽⁴⁾ - Option 6 ⁽³⁾ (Low Brine)				F	134a (G	WP=143	0, ODP=	0)		
Circuit A	kg	55	56	63	66	77	91	103	97	104
Circuit A	tCO,e	78	80	90	95	110	131	147	138	149
Circuit D	kg	56	57	64	67	78	68	81	98	105
Circuit B	tCO ₂ e	80	81	92	96	111	98	116	140	150

⁽¹⁾ In dB ref=10⁻¹² W, 'A' weighted. Declared noise emission value in accordance with ISO 4871 with an uncertainty of +/-3 dB(A). Measured in accordance with ISO 9614-1 and certified by Eurovent.

(4) Values are guidelines only. Refer to the unit name plate.

(5) Depending on the operating conditions, the unit may have a different minimum capacity and/or cycle on and off.

Eurovent certified values

⁽²⁾ In dB ref 20µPa, 'A' weighted. Declared noise emission value in accordance with ISO 4871 with an uncertainty of +/-3 dB(A). For information, calculated from the sound power Lw(A).

⁽³⁾ Options: 15=Low noise level; 15LS=Very low noise level; 116A=LP variable speed dual pump; 116W=HP variable speed dual pump; 49=Partial heat recovery; 50=Total heat recovery

30KAV		500	550	600	650	720	800	900	1000	1100	
Oil		SW220									
Circuit A	- 1	27	26	25	23	20	23	20	23	20	
Circuit B	I	27	26	25	23	20	23	20	23	20	
Checking the unit			S	martView	interfac	e with 7"	colour to	uch scre	en		
Languages			10 I				R, IT, NL, custome		TU +		
Smart energy metering					Sta	ndard fea	ature				
Wireless connectivity						Option					
Expansion valve					Electroni	c expans	sion valve)			
Air-cooled exchanger				Novatio	n™ micro	o-channe	l heat ex	changer			
Fans											
Standard unit						•	∕I fans w				
Unit + option 17		Inverter driven Flying Bird™ VI fans with EC motor									
Quantity		6	6	8	8	10	10	12	12	14	
Maximum total air flow	l/s	35580	35580	47440	47440	59300	59300	71160	71160	83020	
Maximum rotation speed	r/s	16,0	16,0	16,0	16,0	16,0	16,0	16,0	16,0	16,0	
Maximum total air flow rate + option 15LS ⁽³⁾	l/s	28920	26100	41600	43200	56000	50000	67200	57840	72800	
Maximum rotation speed + option 15LS ⁽³⁾	r/s	13,2	12,0	14,2	14,7	15,2	13,7	15,2	13,2	14,2	
Water exchanger						d multi-tu					
Water volume	- 1	83	88	96	100	115	126	144	165	183	
Max. water-side operating pressure without hydraulic module	kPa	1000	1000	1000	1000	1000	1000	1000	1000	1000	
Hydraulic module (option)		Dual	-pump, s				iter drain), heaters		ssure sen	sors,	
Pump				Variable	speed d	ual pump	os with A	C motors			
Expansion vessel volume	I	80	80	80	80	80	80	-	-	-	
Max. operating pressure, water side	kPa	400	400	400	400	400	400	-	-	-	
Water connections					Vio	ctaulic® ty	/ре				
Without options 116A/116W ⁽³⁾											
Connections	inches	5	5	6	6	6	6	8	8	8	
External pipe diameter	mm	141,3	141,3	168,3	168,3	168,3	168,3	219,1	219,1	219,1	
With options 116A/116W ⁽³⁾											
Connections	inches	5	5	5	5	5	5	-	-	-	
External pipe diameter	mm	141,3	141,3	141,3	141,3	141,3	141,3	-		-	
Casing paint colour					Colour	code RA	AL 7035				

⁽³⁾ Options: 15=Low noise level; 15LS=Very low noise level; 116A=LP variable speed dual pump; 116W=HP variable speed dual pump; 49=Partial heat recovery; 50=Total heat recovery

Physical properties of units with High energy efficiency option (119) and High energy efficiency+ option (119+) Physical properties of 30KAVP units

30KAV options 119/119+ & 30KAVP		500	550	600	650	720	800	900	1000	1100
Sound levels	,			•						
30KAV_option_119+ & 30KAVP										
Sound power ⁽¹⁾	dB(A)	96	96	97	98	99	98	100	98	100
Sound pressure at 10 m ⁽²⁾	dB(A)	63	63	64	66	66	65	67	65	67
30KAV_option_119+ & 30KAVP: option 15(3)										
Sound power ⁽¹⁾	dB(A)	95	95	94	96	97	96	98	98	98
Sound pressure at 10 m ⁽²⁾	dB(A)	62	62	62	64	64	64	65	65	65
30KAV_option_119+ & 30KAVP: option 15LS(3)										
Sound power ⁽¹⁾	dB(A)	90	91	91	92	94	92	94	93	94
Sound pressure at 10 m ⁽²⁾	dB(A)	57	58	58	59	61	60	61	60	61
Dimensions										
30KAV option 119 & 119+ & 30KAVP										
Length	mm	6772	6772	6772	6772	7962	9155	9120	10346	10346
Width	mm	2261	2261	2261	2261	2261	2261	2261	2261	2261
Height	mm	2324	2324	2324	2324	2324	2324	2324	2324	2324
Length: Unit + options										
Options 49/50 (3)	mm	6772	6772	6772	6772	7962	9155	9120	10346	10346
Options 116A/116W (3)	mm	6772	6772	6772	6772	7962	9155	-	-	-
Operating weight ⁽⁴⁾										
30KAV option 119+ & 30KAVP	kg	5527	5535	5547	5550	5985	6792	6901	7663	7692
Option 49 (3)	kg	5728	5735	5748	5751	6183	7007	7116	7891	7920
Option 50 (3)	kg	5781	5788	5874	5877	6327	7192	7301	8120	8149
Options 116A/116W(3)	kg	5941	6055	6043	6069	6029	7470	-	-	-
Compressors			06Z twin			eed com			AC motor.	
Circuit A	Quantity	1	1	1	1	1	1	1	1	1
Circuit B	Quantity	1	1	1	1	1	1	1	1	1
Unit minimum capacity ⁽⁵⁾	%	13	13	13	13	13	13	13	12	12
Refrigerant ⁽⁴⁾ - 30KAV option 119 & 119+ & 30KAVP				R	134a (G	WP=143	0, ODP=	0)		
Circuit A	kg	71	71	68	66	78	101	105	105	106
	tCO ₂ e	102	102	97	94	112	144	150	150	152
Circuit B	kg	72	72	68	69	79	79	84	106	107
Circuit B	tCO ₂ e	103	103	97	99	113	113	120	152	153
Refrigerant ⁽⁴⁾ - Option 5 ⁽³⁾ (Medium Brine)				R	134a (G	WP=143	0, ODP=	0)		
Circuit A	kg	78	78	75	73	86	111	116	116	117
	tCO ₂ e	112	112	107	104	123	159	165	165	167
Circuit B	kg	79	79	75	76	87	87	92	117	118
Circuit B	tCO₂e	113	113	107	109	124	124	132	167	168
Refrigerant ⁽⁴⁾ - Option 6 ⁽³⁾ (Low Brine)				R	134a (G	WP=143	0, ODP=	0)		
Circuit A	kg	75	75	71	69	82	106	110	110	111
Oli Cult A	tCO ₂ e	107	107	102	99	117	152	158	158	159
Circuit B	kg	76	76	71	72	83	83	88	111	112
Oncore D	tCO ₂ e	108	108	102	104	119	119	126	159	161

⁽¹⁾ In dB ref=10-12 W, 'A' weighted. Declared noise emission value in accordance with ISO 4871 with an uncertainty of +/-3 dB(A). Measured in accordance with ISO 9614-1 and certified by Eurovent.

⁽⁴⁾ Values are guidelines only. Refer to the unit name plate.
(5) Depending on the operating conditions, the unit may have a different minimum capacity and/or cycle on and off.

Eurovent certified values

In dB ref 20µPa, 'A' weighted. Declared noise emission value in accordance with ISO 4871 with an uncertainty of +/-3 dB(A). For information, calculated from the sound

Options: 15=Low noise level; 15LS=Very low noise level; 116A=LP variable speed dual pump; 116W=HP variable speed dual pump; 49=Partial heat recovery; 50=Total heat recovery; 5=Medium temperature brine solution; 6=Low temperature brine solution

30KAV options 119/119+ & 30KAVP		500	550	600	650	720	800	900	1000	1100
Oil						SW220				
Circuit A	I	27	26	25	23	20	23	20	23	20
Circuit B	I	27	26	25	23	20	23	20	23	20
Checking the unit			S	martView	interface	e with 7"	colour to	uch scre	en	
Languages			10 I	anguage o			R, IT, NL, custome		TU +	
Smart energy metering					Star	ndard fea	ature			
Wireless connectivity						Option				
Expansion valve					Electroni	c expans	ion valve			
Air-cooled exchanger				Novatio	n™ micro	o-channe	l heat ex	changer		
Fans							-			
30KAV option 119			Inv	erter driv	en Flying	g Bird™ \	/I fans w	ith AC mo	otor	
30KAV_option_119+ & 30KAVP				g Bird™ '	VI impelle	er with va	ariable sp	eed EC	motor	
Quantity		10	10	10	10	12	14	14	16	16
Maximum total air flow	l/s	59300	59300	59300	59300	71160	83020	83020	94880	94880
Maximum rotation speed	r/s	16,0	16,0	16,0	16,0	16,0	16,0	16,0	16,0	16,0
Maximum total air flow rate + option 15LS ⁽³⁾	l/s	44700	43500	52000	52000	64800	67480	75600	74080	83200
Maximum rotation speed + option 15LS ⁽³⁾	r/s	12,3	12	14,2	14,2	14,7	13,2	14,7	12,7	14,2
Water exchanger			1			d multi-tu	1	1		
Water volume	<u> </u>	83	88	96	100	115	126	144	165	183
$\mbox{Max.}$ water-side operating pressure without hydraulic module	kPa	1000	1000	1000	1000	1000	1000	1000	1000	1000
Hydraulic module (option)		Dual	-pump, s				iter drain , heaters		sure sen	sors,
Pump				Variable	speed d	ual pump	s with A	C motors		
Expansion vessel volume	I	80	80	80	80	80	80	-	-	-
Max. operating pressure, water side	kPa	400	400	400	400	400	400	-	-	-
Water connections					Vio	ctaulic® ty	/pe			
Without options 116A/116W ⁽³⁾							-			-
Connections	inches	5	5	6	6	6	6	8	8	8
External pipe diameter	mm	141,3	141,3	168,3	168,3	168,3	168,3	219,1	219,1	219,1
With options 116A/116W ⁽³⁾										
Connections	inches	5	5	5	5	5	5	-	-	-
External pipe diameter	mm	141,3	141,3	141,3	141,3	141,3	141,3	-	-	-
Casing paint colour					Colour	code RA	L 7035	•		

⁽³⁾ Options: 15=Low noise level; 15LS=Very low noise level; 116A=LP variable speed dual pump; 116W=HP variable speed dual pump; 49=Partial heat recovery; 50=Total heat recovery; 5=Medium temperature brine solution; 6=Low temperature brine solution

5.2 - Electrical data

30KAV		500	550	600	650	720	800	900	1000	1100
Power circuit supply										
Nominal voltage	V-ph-Hz	400-3-50								
Voltage range	V	360-440								
Control circuit supply		24 V via internal transformer								
Maximum operating input power ⁽¹⁾										
Standard unit	kW	221	241	263	286	317	361	400	450	483
Unit + option 16	kW	238	260	282	306	338	383	433	475	529
Power factor at maximum power (1) (2)		0.91-0.93								
Displacement Power Factor (Cos Phi)						>0.98			-	
Total harmonic distortion (THDi)(1)(3)	%					35-45				
Nominal operating current draw ⁽⁴⁾										
Standard unit	Α	265	297	316	340	362	422	468	524	564
Maximum unit current draw (Un)(1)										
Standard unit	Α	344	375	409	444	492	561	622	699	751
Unit + option 16	Α	371	404	438	475	525	595	674	738	823
Maximum current (Un-10%)(1)										
Standard unit	Α	377	410	447	473	524	612	662	745	800
Unit + option 16	Α	405	441	479	507	560	649	719	787	878
Maximum starting current		•								
Standard unit	Α	212	228	245	262	286	378	412	399	425

- (1) Values at the unit's maximum operating condition (as shown on the unit's name plate).
- The value decreases as the input power is reduced
- May vary depending on the short-circuit ratio of the installation.

The THDi value increases as the input power drops. However, the effects on the installation are greater when the current is at its maximum. For this reason, the installation's compliance with standards relating to voltage harmonics (for example, the IEC standard 60000-2-4) must usually be checked at the maximum load condition, to ensure the other operating scenarios are covered.

(4) Standardised EUROVENT conditions, water-cooled exchanger water inlet/outlet = 12°C/7°C, outdoor air temperature = 35°C.

Electrical data for units with High energy efficiency option (119) and High energy efficiency+ option (119+)

30KAV options 119/119+		500	550	600	650	720	800	900	1000	1100	
Power circuit supply											
Nominal voltage	V-ph-Hz					400-3-50					
Voltage range	V					360-440					
Control circuit supply				2	24 V via i	nternal tra	ansforme	er			
Maximum operating input power ⁽¹⁾											
Unit + option 119	kW	220	244	255	277	307	353	386	438	466	
Unit + option 119+	kW	218	242	252	274	304	350	382	434	461	
Unit + option 119 + option 16	kW	237	263	274	297	328	375	419	463	512	
Unit + option 119+ + option 16	kW	235	261	271	294	325	372	415	459	507	
Power factor at maximum power (1) (2)		0.91-0.93									
Displacement Power Factor (Cos Phi)		>0.98									
Total harmonic distortion (THDi)(1)(3)	%	35-45									
Nominal operating current draw ⁽⁴⁾											
Unit + option 119	Α	228	260	285	318	346	374	441	466	535	
Unit + option 119+	Α	225	257	281	314	341	369	435	460	528	
Maximum operating current draw (Un)(1)											
Unit + option 119	Α	342	380	397	430	476	548	600	681	724	
Unit + option 119+	Α	339	377	393	426	471	543	594	675	717	
Unit + option 119 + option 16	Α	369	409	426	461	509	582	652	720	796	
Unit + option 119+ + option 16	Α	366	406	422	457	504	577	646	714	789	
Maximum current (Un-10%) ⁽¹⁾											
Unit + option 119	Α	375	415	435	459	508	599	640	727	773	
Unit + option 119+	Α	372	412	431	455	503	594	634	721	766	
Unit + option 119 + option 16	Α	402	444	464	490	541	633	692	766	845	
Unit + option 119+ + option 16	Α	399	441	460	486	536	628	686	760	838	
Maximum starting current											
Unit + option 119	Α	211	230	239	255	278	371	401	390	411	
Unit + option 119+	Α	209	229	237	253	275	369	398	387	408	

- (1) Values at the unit's maximum operating condition (as shown on the unit's name plate).
- The value decreases as the input power is reduced May vary depending on the short-circuit ratio of the installation.

The THDi value increases as the input power drops. However, the effects on the installation are greater when the current is at its maximum. For this reason, the installation's compliance with standards relating to voltage harmonics (for example, the IEC standard 60000-2-4) must usually be checked at the maximum load condition, to ensure the other operating scenarios are covered.

(4) Standardised EUROVENT conditions, water-cooled exchanger water inlet/outlet = 12°C/7°C, outdoor air temperature = 35°C.

30KAVP		500	550	600	650	720	800	900	1000	1100
Power circuit supply										
Nominal voltage	V-ph-Hz					400-3-50)			
Voltage range	V					360-440				
Control circuit supply	·			2	24 V via i	nternal tra	ansforme	er		
Maximum unit power input ⁽¹⁾										
Standard unit	kW	213	238	246	268	302	337	380	419	459
Unit + option 16	kW	229	256	265	289	324	366	412	457	502
Power factor at maximum power (1) (2)						0.91-0.93	3	-		•
Displacement Power Factor (Cos Phi)		>0.98								
Total harmonic distortion (THDi) ^{(1) (3)}	%					35-45				
Nominal unit current draw ⁽⁴⁾										
Standard unit	Α	223	254	278	310	337	366	430	455	522
Maximum operating current draw (Un) ⁽¹⁾					*	*		-		-
Standard unit	Α	332	370	383	416	470	523	591	652	713
Unit + option 16	Α	357	398	412	448	504	568	641	711	780
Maximum current (Un-10%)(1)					*	*				-
Standard unit	А	362	393	418	443	500	567	629	684	759
Unit + option 16	Α	389	422	449	475	535	613	679	744	826
Maximum starting current										
Standard unit		214	233	241	258	286	365	410	387	424

⁽¹⁾ Values at the unit's maximum operating condition (as shown on the unit's name plate).

5.3 - Short circuit current withstand capability for all units

30KAV/30KAVP		500	550	600	650	720	800	900	1000	1100
Standard machine										
Rated short-circuit withstand currents										
Short time (1s) assigned current - Icw	kA eff	11	11	11	11	11	11	11	26	26
Rated peak current - lpk	kA pk	80	80	80	80	80	80	80	110	110
Value with electrical protection upstream ⁽¹⁾			·			·				
Conditional short circuit assigned current Icc	kA eff	50	50	50	50	50	50	50	50	50
Associated protection - type					Fu	ses (gG/	gL)			
Associated protection - maximum rating	Α	630	630	800	800	800	800	800	1000	1250
Unit with option 70D										
Short-circuit withstand current										
Conditional short circuit assigned current Icc	kA eff	50	50	50	50	50	50	50	50	50

⁽¹⁾ If another current limitation protection device is used, its time-current and thermal constraint (I2t) trip characteristics must be at least equivalent to those of the recommended

NOTE: The short circuit current withstand capability values above are in accordance with the TN system.

The value decreases as the input power is reduced

May vary depending on the short-circuit ratio of the installation.

The THDi value increases as the input power drops. However, the effects on the installation are greater when the current is at its maximum. For this reason, the installation's compliance with standards relating to voltage harmonics (for example, the IEC standard 60000-2-4) must usually be checked at the maximum load condition, to ensure the other operating scenarios are covered.

(4) Standardised EUROVENT conditions, water-cooled exchanger water inlet/outlet = 12°C/7°C, outdoor air temperature = 35°C.

5.4 - Electrical data, optional hydraulic module

The pumps that are factory-installed in these units comply with the European Ecodesign directive ErP. The additional electrical data required(1) is as follows:

Low pressure dual pump motors (option 116A)

No. ⁽²⁾	Description ⁽³⁾		500	550	600	650	720	800
	Nominal efficiency at full load and nominal voltage	%	89,2	90,3	90,3	90,3	91,3	91,3
1	Nominal efficiency at 75% of full load and nominal voltage	%	88,2	90,3	90,3	90,3	91,4	91,4
	Nominal efficiency at 50% of full load and nominal voltage	%	87,3	88,9	88,9	88,9	90,3	90,3
2	Efficiency level	-			IE	3		
3	Year of manufacture	-	This info	del at the	time of in	ending on corporation nameplate	the manu n. Please s.	ıfacturer refer to
4	Manufacturer's name and trademark, commercial registration number and place of manufacturer	-			Same a	s above		
5	Product's model number	-	Same as above					
6	Number of motor poles		2	2	2	2	2	2
7-1	Nominal shaft power output at full load and nominal voltage (400 V)	kW	5,5	7,5	7,5	7,5	11	11
7-2	Maximum input power (400 V) ⁽⁴⁾	kW	6,17	8,31	8,31	8,31	12,05	12,05
8	Nominal input frequency	Hz	50	50	50	50	50	50
9-1	Nominal voltage	V	3 x 400					
9-2	Maximum current drawn (400 V) ⁽⁵⁾	Α	10,50	13,20	13,20	13,20	18,70	18,70
10	Nominal speed	r/s - rpm	48.6 - 2917	48.9 - 2935	48.9 - 2935	48.9 - 2935	49.1 - 2945	49.1 - 2945
11	Product disassembly, recycling or disposal at end of life	-					. Disposa company	
	Operating conditions for which the motor is specifically designed							
	I - Altitudes above sea level	m			< 10	000(6)		
40	II - Ambient air temperature	°C	< 40					
12	III - Maximum operating temperature	°C	Please refer to the operating conditions given in this manual or in the specific conditions in the Carrier selection programs.					
	IV - Potentially explosive atmospheres	-		No	on-ATEX	environme	ent	

⁽¹⁾ Required by regulation No. 640/2009 concerning the application of directive 2009/125/EC on the eco-design requirements for electric motors.

⁽²⁾ Item number imposed by regulation No. 640/2009, annex I2b.
(3) Description given by regulation No. 640/2009, annex I2b.

To obtain the maximum input power for a unit with hydraulic module, add the "maximum operating input power" for the unit (see Electrical data table) to the pump power.

To obtain the maximum unit operating current draw for a unit with hydraulic module add the "maximum unit operating current draw" (Electrical data table) to the pump

Above 1000 m, a degradation of 3% for each 500 m should be taken into consideration.

High pressure dual pump motors (option 116W)

No. ⁽²⁾	Description ⁽³⁾		500	550	600	650	720	800
	Nominal efficiency at full load and nominal voltage	%	90,3	91,3	91,3	91,3	91,9	91,9
1	Nominal efficiency at 75% of full load and nominal voltage	%	90,3	91,4	91,4	91,4	92,1	92,1
	Nominal efficiency at 50% of full load and nominal voltage	%	88,9	90,3	90,3	90,3	90,4	90,4
2	Efficiency level	-			IE	≣3	`	
3	Year of manufacture	-		del at the		corporation	the manu on. Please s.	
4	Manufacturer's name and trademark, commercial registration number and place of manufacturer	-			Same a	s above		
5	Product's model number	-	Same as above					
6	Number of motor poles	-	2	2	2	2	2	2
7-1	Nominal shaft power output at full load and nominal voltage (400 V)	kW	7,5	11	11	11	15	15
7-2	Maximum input power (400 V) ⁽⁴⁾	kW	8,31	12,05	12,05	12,05	16,38	16,38
8	Nominal input frequency	Hz	50	50	50	50	50	50
9-1	Nominal voltage	V			3 x	400	`	
9-2	Maximum current drawn (400 V) ⁽⁵⁾	Α	13,20	18,70	18,70	18,70	25,20	25,20
10	Nominal speed	r/s - rpm	48.9 - 2935	49.1 - 2945	49.1 - 2945	49.1 - 2945	49.1 - 2945	49.1 - 2945
11	Product disassembly, recycling or disposal at end of life	-					. Disposa e company	
	Operating conditions for which the motor is specifically designed							
	I - Altitudes above sea level	m	< 1000 ⁽⁶⁾					
	II - Ambient air temperature	°C	< 40					
12	III - Maximum operating temperature	°C	Please refer to the operating conditions given in this manual or in the specific conditions in the Carrier selection programs.					
	IV - Potentially explosive atmospheres	-		N	on-ATEX	environme	ent	

- (1) Required by regulation No. 640/2009 concerning the application of directive 2009/125/EC on the eco-design requirements for electric motors.
- (2) Item number imposed by regulation No. 640/2009, annex I2b.
- (3) Description given by regulation No. 640/2009, annex I2b.
- (4) To obtain the maximum input power for a unit with hydraulic module, add the "maximum operating input power" for the unit (see Electrical data table) to the pump power.
- (5) To obtain the maximum unit operating current draw for a unit with hydraulic module add the "maximum unit operating current draw" (Electrical data table) to the pump current draw.
- (6) Above 1000 m, a degradation of 3% for each 500 m should be taken into consideration.

5.5 - Compressor usage per circuit(A, B)

Compressor 30KAV	Circuit	500	550	600	650	720	800	900	1000	1100
06ZCE1H3AA06013	Α	1	1	-	-	-	-	-	-	-
06ZGE1H3AA06013	В	1	1	-	-	-	-	-	-	-
06ZCE1T3AA06013	Α	-	-	1	1	1	-	-	-	-
062CE113AA06013	В	-	-	1	1	1	1	1	-	-
06ZFC2T3AA06013	Α	-	-	-	-	-	1	1	1	1
	В	-	-	-	-	-	-	-	1	1

Compressor 30KAVP	Circuit	500	550	600	650	720	800	900	1000	1100
00705 4724 4 00042	Α	1	1	1	1	1	-	-	-	-
06ZCEAT3AA06013	В	1	1	1	1	1	1	1	-	-
06ZFCBT3AA06013	A	-	-	-	-	-	1	1	1	1
	В	-	-	-	-	-	-	-	1	1

The compressor motor (all models) does not fall within the scope of the regulation 640/2009 & its amendment 4/2014. in accordance with article 1)2.b.

Electrical data notes and operating conditions for 30KAV units

- 30KAV 0500 to 1100 units have a single power connection point located immediately upstream of the main disconnect switch.
- With the exception of machines equipped with option 70D, a part of the short circuit protection is not provided and must be carried out on the installation, in compliance with the instructions given in this document.
- The two electrical cabinets contain:
- A power supply disconnect switch: disconnect switch or circuit breaker/disconnect switch if option 70D is present,
- All or part of the equipment protecting the circuits inside the machine from short circuits.⁽¹⁾
- The variable frequency drives for actuation and overload protection of the compressor, fan, and pump motors,
- The switching equipment for the heaters and fans for the electrical equipment,
- The control devices
- · Connections to the building installation:

Electrical installation and all the connections to the network must be carried out in compliance with all standards applicable to the installation location. (2)

30KAV units are designed and built to ensure compliance with these regulations. The recommendations of European standard EN 60204-1 (corresponds to IEC 60204-1 - Machine safety - Electrical equipment of machines - part 1: General requirements) are specifically taken into account when designing the electrical equipment.

Notes

- The standard EN60204-1 is designed to meet the requirements of the Machinery Directive
- Annex B of EN 60204-1 enables the electrical characteristics used for the operation
 of the machines to be defined. Those described below apply alongside the other
 information provided in this document:
- 1. Environment

The classification of the environment is specified in standard IEC60364:

- Outdoor installation(3)
- Presence of water: AD3 (sprays) (3)
- Ambient temperature range for the standard machine: from -20 °C to +44 °C (48 °C) (4),

Ambient temperature range for the machine with option 16: from -20°C to +48°C (55°C) (4),

- Altitude: up to 1000 m (2000 m) (5)
- Presence of solid foreign bodies: Class AE3 (no significant dust present)(3),
- Presence of corrosive and polluting substances, class AF1 (negligible),
- Competence of personnel: BA4 (trained personnel).
- Compatibility for low-frequency conducted disturbances according to class 2 levels per IEC61000-2-4 standard:
- Power supply frequency variation: +-1 Hz,
- Phase imbalance: 2 %,
- Voltage Total Harmonic Distortion (THD): 8 %,
- The neutral wire (N) must not be connected directly to the unit (if necessary, use a transformer).

- Overcurrent protection of the power supply conductors is not provided with the unit.
- The factory-fitted disconnect switch is of a type suitable for power interruption in compliance with EN 60947-3 (equivalent to IEC 60947-3).
- 6. The units are designed for connection to TN networks (IEC 60364). In IT networks, the use of filters integrated into the frequency inverter(s) prevents the machines from fulfilling their intended purpose. In addition, the equipment characteristics in case of insulation failure have been modified. Provide a local earth, consult competent local organisations to complete the electrical installation.
- Electromagnetic environment: the classification of the electromagnetic environment is described in the standard EN61800-3 (equivalent to IFC 61800-3):
- Immunity to external interference defined by the second environment $\!\!^{\text{(6)}}$
- Interference emissions as defined in category C3(7
- The variable frequency drives integrated into 30KAV machines have harmonic currents which are a source of interference. An analysis may be required to verify if this interference exceeds the compatibility limits of the other devices connected to the same power supply network. The compatibility levels inside an electrical installation, that must be met at the in-plant coupling point (IPC) to which other loads are connected, are described in standard IEC 61000-2-4.
- Leakage currents: if protection by monitoring the leakage currents is necessary
 to ensure the safety of the installation, the presence of additional derived currents
 introduced by the use of variable frequency drives in the unit must be considered.
 In particular the reinforced immunity protection types and a control value not
 lower than 150 mA are recommended when selecting control differential protection
 devices

Note: if particular aspects of an installation require different specifications to those listed above (or which are not listed), always contact your Carrier representative.

- (1) Depending on the options selected for the machine
- (2) Generally, the recommendations of the International Electrotechnical Commission document (IEC60364) are accepted as compliance with the requirements of the installation guidelines.
- (3) The required protection level for this class is IP43BW (according to the reference standard IEC 60529). All 30KAV units are classified as IP44CW, and fulfil this protection condition.
- (4) The values in brackets correspond to operation with degraded thermal performances.
- (5) Above 1000m, the maximum temperature must be reduced by 0.5K for every additional 100m up to 2000m,
- (6) Example of installations included in the first environment: commercial and residential buildings.
 - Example of installations of the second environment: Industrial zones, technical premises powered from a dedicated transformer.
- (7) Category C3 is suitable for use in an industrial environment and is not designed for use in a public low-voltage system that supplies residential locations. As an option, conformity with category C2 permits this type of installation.

Please refer to the certified dimensional drawings, supplied with the unit.

6.1 - Power supply

The power supply must conform to the specification on the chiller nameplate. The supply voltage must be within the range specified in the electrical data table. For connections, refer to the wiring diagrams.

WARNING: Operating the chiller with an incorrect supply voltage or excessive phase imbalance constitutes misuse which will invalidate the Carrier warranty. If the phase imbalance exceeds 2% for voltage, or 10% for current, contact your local electricity supplier and ensure that the chiller is not switched on until corrective measures have been taken.

6.2 - Voltage phase imbalance (%)

100 x max. deviation from average voltage

Average voltage

Example:

On a 400 V - 3 ph - 50 Hz supply, the individual phase voltages were measured with the following values:

AB = 406 V; BC = 399 V; AC = 394 V

Average voltage = (406 + 399 + 394)/3 = 1199/3

= 399.7 (rounded up to 400 V)

Calculate the maximum deviation from the 400 V average:

(AB) = 406 - 400 = 6

(BC) = 400 - 399 = 1

(CA) = 400 - 394 = 6

The maximum deviation from the average is 6 V. The greatest percentage deviation is:

100 x 6/400 = 1.5%

This is less than the permissible 2% and therefore acceptable.

6.3 - Power connection/disconnect switch

30KAV/30KAVP 0500 to 1100 machines are equipped with a single electrical power connection point.

6.4 - Recommended cable sections

Cable sizing is the responsibility of the installer, and depends on the characteristics and regulations applicable to each installation site.

The cable selections given in this document are therefore only given as a guide, and do not in any way incur Carrier's liability. After cable sizing has been completed, using the certified dimensional drawing, the installer must verify the appropriate means of connection and define any modifications necessary on site.

The connections provided as standard for the customer-supplied power supply cables, on the main disconnect switch, are designed for the number and type of cross sections given in the second column of the table below.

The calculations have been performed using the maximum possible current on the machine (see electrical data notes table).

The calculations of favourable and unfavourable cases have been performed using the maximum current for each unit (see electrical data notes table). The study includes the standardised installation cases according to IEC 60364: cable with PVC (70°C) or XLPE (90°C) insulation with copper core; fitted in accordance with table 52c of the standard. The maximum ambient temperature taken into consideration for this study is 46°C. The given maximum length is calculated to limit the voltage drop to 5%.

IMPORTANT: Before connecting the main power cables (L1 - L2 - L3), it is imperative to check the correct order of the 3 phases before connecting to the main disconnect/isolator switch.

6.5 - Power cable access routing

The power cable access routing into the electrical cabinet is from the side or underneath of the unit: refer to the plans for the unit.

The choice depends on the installation configuration of the machine and the specifications of the cables to be connected:

Cable access routing from the side of the unit: this configuration allows a larger number of cables to be connected and/or for larger curve radii.

Cable access routing from underneath: this configuration requires the unit to be raised in relation to the cable routing level (for example: fitting on rails and supports). The quantity of conductors which can be connected, and the bending radius needed, are also restricted.

The installer is responsible for ensuring the electrical cabinet is sealed around the power cable access routing. Holes must be drilled in the plate provided, and the latter must be assembled.

Important: check the bending radius for the cable access routing underneath the unit. Refer to the certified dimensional drawing for the unit.

Minimum and maximum cable section selection table for connection to 30KAV/30KAVP units

			Calc	ulation of favourable case	:	Calcu	lation of unfavourable ca	se		
30KAV/ 30KAVP	Max. connect	- Suspended overhead line (standard routing no. 17) - Cable insulated to 90°C - Copper conductor (Cu)			sed	Conductors in ducts or multi-conductor cables in closed conduits (standardised routing no. 41) Cable insulated to 70°C when possible Copper conductor (Cu)				
JUNAVI	Connected from the side	Connected from underneath	Section ⁽²⁾	Max length for a voltage drop <5%	Cable type ⁽³⁾	Section ⁽²⁾	Max length for a voltage drop <5%	Cable type ⁽³⁾		
	qty x mm² (per phase)	qty x mm² (per phase)	qty x mm² (per phase)	m	-	qty x mm² (per phase)	m	-		
Standard	unit									
500	4 x 240	3 x 240	1 x 185	260	90°C	2 x 185	450	70 °C		
550	4 x 240	3 x 240	1 x 185	230	90°C	2 x 240	490	70°C		
600	4 x 240	3 x 240	1 x 240	260	90°C	2 x 240	430	70°C		
650	4 x 240	3 x 240	1 x 240	240	90°C	3 x 185	460	70°C		
720	4 x 240	3 x 240	2 x 120	300	90°C	3 x 240	480	70°C		
800	4 x 240	3 x 240	2 x 150	230	90°C	3 x 240	420	70°C		
900	4 x 240	3 x 240	2 x 185	240	90°C	4 x 240	440	70°C		
1000	4 x 240	3 x 240	2 x 240	260	90°C	4 x 240	400	70°C		
1100	4 x 240	3 x 240	3 x 150	230	90°C	3 x 240	310	90°C		

- (1) Connection capacities actually available for each machine. These are defined according to the connection terminal size, the electrical box access opening dimensions, and the available space inside the electrical box.
- (2) Selection simulation result considering the hypotheses indicated.
- (3) If the maximum calculated selection is for a 90° cable type, this means that a selection based on a 70°C cable type can exceed the connection capacity actually available. Special attention must be given to the selection.

NOTE: The currents considered are given for a machine without options.

6.6 - Field-installed control wiring

IMPORTANT: Connecting the interface circuits on-site creates certain safety risks; any modification to the electrical box must ensure the equipment remains compliant with local regulations. In particular, precautions must be taken to prevent accidental electrical contact between the circuits supplied by different sources:

- The choice of routing and/or insulation characteristics of the conductors ensures double electrical insulation.
- The conductors should be fixed together inside the electrical box to prevent contact between the end of the conductor and a live part in case of accidental disconnection.

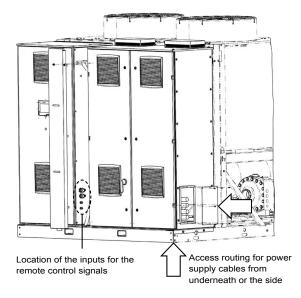
Refer to the 30KAV SmartView control manual and the certified wiring diagram supplied with the unit for the field control wiring for the following features:

- Remote on/off switch,
- Capacity limit external switch,
- Remote dual setpoint,
- Operating and alarm feedback,
- Evaporator pump control,
- Setpoint offset,
- Various interlocks on the Energy Management Module (EMM) board option,
- Control of the variable speed evaporator pump (option),
- Refrigerant leakage detection signal (option).

Connections to the customer communication bus

The CCN bus is connected using the connectors specifically provided inside the electrical box. Two connectors are provided to allow both permanent and service connections.

The permanent Ethernet bus and USB service socket are connected using the connector integrated into the touchscreen interface.

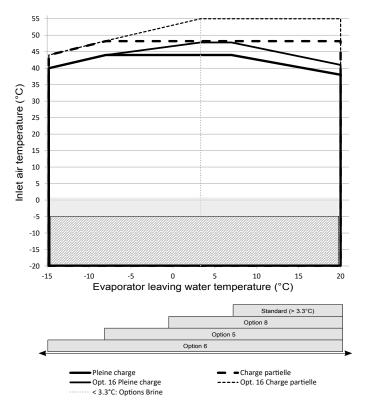

A shielding clamp for the cable from the system is provided near the permanent bus connectors.

6.7 - Customer and service power reserves

After all possible options have been connected, the CT transformer ensures the availability of a 1 A power reserve at 24 VAC for the on-site control cabling.

As an option, the second CT transformer also supplies the 230 V 50 Hz circuit provided to charge a laptop battery, maximum of 0.80 A. This is connected using a CEE7/17 standard, type E socket. An earth leakage switch provides this circuit with additional protection. Its cut-off setting is 10 mA.

Location of the openings for inserting external connections


7.1 - Unit operating range

Evaporator water temperature		Minimum	Maximum
Water inlet at start-up	°C	-	45(1)
Water inlet during operation	°C	6,8	25
Water outlet in operation			
Standard unit	°C	3.3(2)	20
Unit + option 8 ⁽³⁾	°C	-4	20
Unit + option 5 ⁽³⁾	°C	-8	20
Unit + option 6 ⁽³⁾	°C	-15	20
Air temperature at the condenser		Minimum	Maximum
Ambient air for storage	°C	-20	68
Ambient air during operation			
Standard unit	°C	-20(4)	48(1)
Unit + option 16 ⁽³⁾	°C	-20(4)	55 ⁽¹⁾

NOTES:

- The use of a glycol/water mix or the frost protection option is mandatory if the leaving water temperature is less than 4°C,
- The use of a glycol/water mix or the frost protection option is mandatory if the air temperature is less than 0°C.
- (1) Part load operation
- (2) Based on the installation type and the air temperature
- (3) Option 16 = High ambient temperature
- (4) Option 41A compulsory for start-ups below -5°C

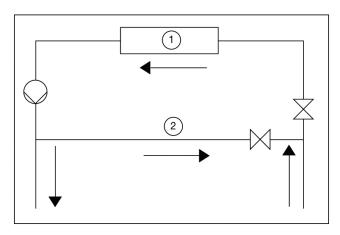
Standard unit

NOTE:

- Evaporator ∆T = 4K
- These operating ranges are guidelines only. Verify the operating range with the Carrier electronic catalogue.

Legend:

Operating range, standard unit

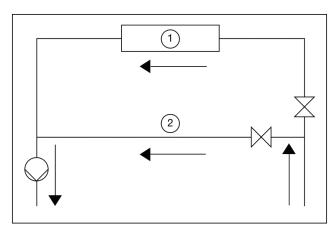

At an air temperature of below 0° C, either the machine must be equipped with option 41A, or the water loop must be protected against freeing by an antifreeze solution (by the installer)

For start-ups at an air temperature below -5°C, the machine must be equipped with option 41A

7.2 - Minimum chilled water flow (units without hydraulic module)

The minimum chilled water flow is shown in the table on the next page. If the installation flow rate is less than the minimum unit flow rate, the evaporator flow can be recirculated, as shown in the diagram.

For minimum chilled water flow rate


Legend:

- 1. Evaporator
- 2 Recirculation

7.3 - Maximum chilled water flow (units without hydraulic module)

The maximum chilled water flow is shown in the table on the next page. If the installation flow rate exceeds the maximum unit flow rate, it can be bypassed as shown in the diagram.

For maximum chilled water flow rate

Legend:

- 1. Evaporator
- 2. Bypass

7.4 - Variable flow evaporator

Variable evaporator flow can be used in standard chillers. The flow rate must be higher than the minimum flow given in the table of permissible flow rates and must not vary by more than 10% per minute.

If the flow rate changes more rapidly, the system should contain a minimum of 6.5 litres of water per kW instead of 3.25 l/kW.

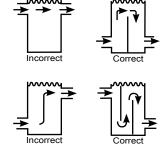
The flow rate can also be controlled by the unit via option 299: Checking the variable water flow rate.

This option allows the unit to control an external pump in order to maintain a constant inlet/outlet temperature difference, a constant outlet pressure or an unoccupied mode.

7.5 - Minimum system water volume

Irrespective of the system, the water loop minimum capacity is given by the formula:

Volume = Cap (kW) x N litres


Application	N
Normal air conditioning	3,25
Process type cooling	6,5

where Cap is the nominal system cooling capacity (kW) at the nominal operating conditions of the installation.

This volume is necessary for stable operation.

It may be necessary to add a buffer water tank to the circuit in order to achieve the required volume. The tank must itself be internally baffled in order to ensure proper mixing of the liquid (water or brine). Please refer to the examples below.

Connection to a buffer tank

7.6 - Maximum system water volume.

Units supplied with a hydraulic module may include an expansion vessel which limits the volume in the water loop.

The table below gives the maximum loop volume compatible with the expansion vessel (for pure water or ethylene glycol depending on the system's various concentrations and static pressures). If this volume is less than the volume of the installed loop, then it is necessary to add an additional expansion vessel within the system.

30KAV/30KAVP		30KAV/30KAVP 500-800				
Static pressure	bar	1	2	2,5		
Pure water	I	3960	2640	1980		
10% EG	I	2940	1960	1470		
20% EG	- 1	2100	1400	1050		
30% EG	I	1740	1160	870		
40% EG	I	1500	1000	750		

CW:ethylene glycol

7.7 - Evaporator water flow rate

Units without hydraulic module

30KAV/30KAVP	Minimum flow rate	Maximum flow rate ⁽¹⁾ (I/s)
500	6,8	49,1
550	7,9	49,1
600	8,4	60,2
650	9,2	61,8
720	9,7	71,3
800	10,7	69,7
900	11,3	81,6
1000	12,4	89,5
1100	14,8	98,2

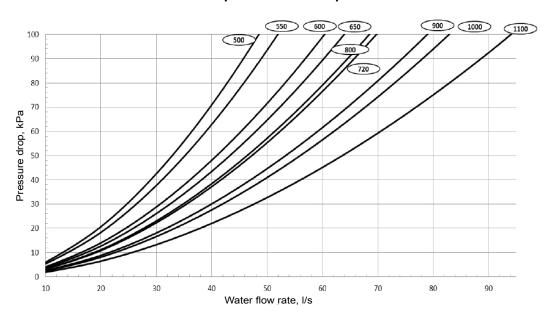
(1) Standard evaporator and heat-transfer medium = water

Units with low pressure hydraulic module (116A)

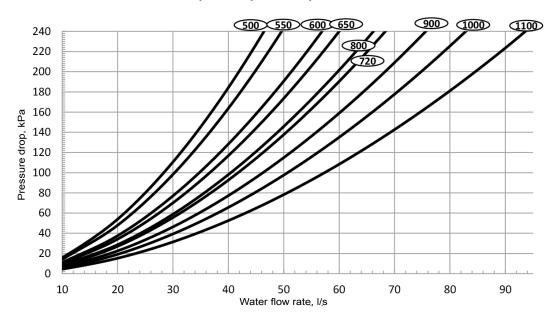
30KAV/30KAVP	Minimum flow rate (I/s)	Maximum flow rate (I/s)
500	(1)	35,2
550	(1)	34,2
600	(1)	34,2
650	(1)	34,2
720	(1)	52,8
800	(1)	52,8

(1) See unit without hydraulic module

Units with high pressure hydraulic module (116W)


30KAV/30KAVP	Minimum flow rate (I/s)	Maximum flow rate (I/s)
500	(1)	34,2
550	(1)	34,6
600	(1)	34,6
650	(1)	34,6
720	(1)	69,4
800	(1)	69,4

(1) See unit without hydraulic module


7.8 - Evaporator pressure drop curves

Data applicable for pure water at 20°C.

Pressure drops - Standard evaporator

Pressure drops - Evaporator option 6 - Turbulators

WARNING: Before carrying out any water connections, install the water box bleed plugs (one plug in the lower section of each water box -supplied in the electrical cabinet).

When connecting units to the water distribution pipe work, refer to the certified dimensional drawings supplied with the unit for the dimensions and position of the exchanger water inlet and outlet connections.

The piping must not transmit any axial or radial force to the exchangers, or any vibrations.

The water must be analysed. Depending on the results, the circuit created must include the elements needed for water treatment: filters, additives, intermediate exchangers, bleed devices, vents, isolation valves, etc., to prevent corrosion, fouling, and deterioration of the pump fittings.

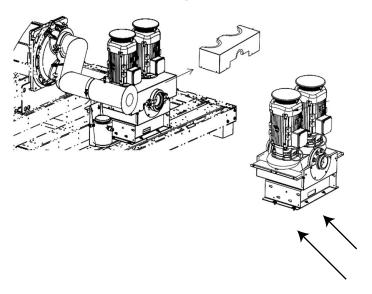
Carrier recommendations on energy transfer fluids:

- No NH⁴⁺ ammonium ions in the water, as these cause significant damage to copper. This is one of the most important factors governing the service life of copper piping. A content of several tenths of mg/l will badly corrode the copper over time.
- Cl⁻ chloride ions also cause damage to copper with a risk of perforating corrosion. If possible keep below 125 mg/l.
- SO₄² sulphate ions can cause perforating corrosion if their content is above 30 mg/l.
- 4. No fluoride ions (<0.1 mg/l).
- No Fe²⁺ and Fe³⁺ ions if non negligible levels of dissolved oxygen are present. Dissolved iron < 5 mg/l with dissolved oxygen < 5 mg/l.
- 6. Dissolved silicon: silicon is an acid element of water and can also lead to a risk of corrosion. Content < 1 mg/l.
- Water hardness: >0.5 mmol/l. Values between 1 and 2.5 mmol/l can be recommended. This will facilitate scale deposit that can limit corrosion of copper. Values that are too high can cause piping blockage over time. A total alkalimetric titre (TAC) below 100 mg/l is desirable.
- 8. Dissolved oxygen: any sudden change in water oxygenation conditions must be avoided. It is as detrimental to deoxygenate the water by mixing it with inert gas as it is to over-oxygenate it by mixing it with pure oxygen. The disturbance of the oxygenation conditions encourages destabilisation of copper hydroxides and shedding of particles.
- 9. Electric conductivity 10-600µS/cm

10. pH: Ideal case pH neutral at 20-25°C (7.5 < pH < 9).

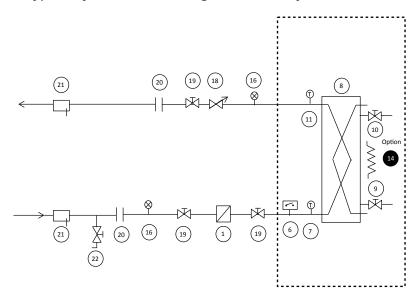
If the hydraulic circuit is drained for a period of more than one month, blanket the entire circuit with nitrogen to prevent any risk of corrosion by differential aeration.

WARNING: Filling, topping up, or emptying of the hydraulic circuit must be carried out by qualified personnel using the air bleed devices and tools and equipment suitable for the products.

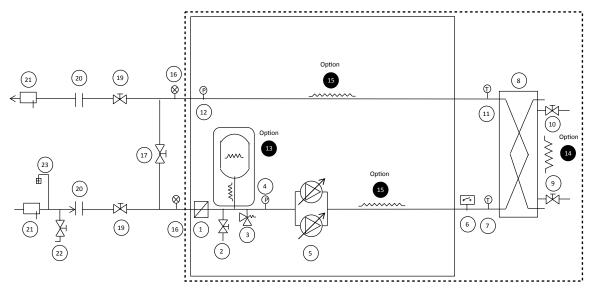

The heat-transfer medium should be filled and drained using devices fitted to the hydraulic circuit by the installer. Never use the unit heat exchangers to add heat exchange fluid.

8.1 - Operating precautions

The hydraulic circuit should be designed to have the least number of elbows and horizontal pipe runs at different levels. Below the main points to be checked for the connection:


- Ensure the inlet water and outlet pipes are connected in the direction shown on the unit.
- Install manual or automatic vents at all high points in the circuit(s).
- Maintain the pressure of the circuit(s) with pressure-reducing valves and install a relief valve and an expansion vessel.
- Units equipped with the hydraulic module include a relief valve. Units with option 293 include an expansion vessel.
- Install thermometers in both the water inlet and outlet pipes.
- Install drain connections at all low points to allow the whole circuit(s) to be drained.
- Install shut-off valves close to the water inlet and outlet connections
- Use flexible connections to reduce the transmission of vibrations.
- Insulate the cold water pipework, after pressure testing, to prevent heat transmission and condensation.
- Cover the insulation with a vapour barrier.
- If there are particles in the fluid which are liable to foul the exchanger, a screen filter must be installed upstream of the pump. The mesh size of this filter must be 1.2 mm (see Typical hydraulic installation diagram).
- Do not introduce any excessive static or dynamic pressure into the heat exchange circuit (with regard to the design operating pressures).
- Before any start-up, verify that the heat-transfer medium is compatible with the materials and the hydraulic circuit coatings.
- If additives or fluids other than those recommended by Carrier are used, ensure that these are not considered gases, and that they are class 2, as defined in directive 2014/68/EU.
- For a hydraulic module (opt. 116V & 116W), when filling with heat-transfer medium, remember to vent the air contained in the pump body (see fig. below). Otherwise, there is a risk that the pump will deteriorate prematurely.

Procedure for venting air from the pumps


8.2 - Victaulic type hydraulic connections

Typical hydraulic circuit diagram without hydraulic module

The hydraulic module options are only compatible with closed loops. The use of the hydraulic module on open systems is prohibited.

Typical hydraulic circuit diagram with hydraulic module

Key

Components of the unit and hydraulic module

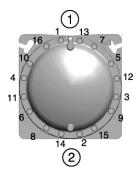
- 1. Screen filter (particle size of 1.2 mm)
- 2. Water drain tap
- 3. Relief valve
- Pressure sensor
 - **NOTE:** Provides pressure information for the pump suction inlet (see Control manual)
- 5. Variable speed dual pump (high or low pressure)
- 6. Water exchanger flow rate sensor
- 7. Temperature probe
 - NOTE: Provides temperature information for the water exchanger inlet (see Control manual)
- 8. Evaporator
- Water purge (evaporator)
- 10. Air purge (evaporator)
- 11. Temperature probe

NOTE: Provides temperature information for the water exchanger outlet (see Control manual)

- Pressure sensor
 - **NOTE:** Provides pressure information for the water exchanger outlet (see Control manual)
- 13. Expansion vessel (Option 293)
- 14. Heater for evaporator frost protection (option 41A & 41B)
- 15. Heater for hydraulic module frost protection (option 41B)

Installation components

- 16. Pressure gauge
- 17. Bypass valve for frost protection (if shut-off valves (item 19) are closed during winter)
- Water flow control valve
- 19. Shut-off valve
- 20. Pocket
- 21. Flexible connection
- 22. Charge valve
- 23. Air bleed
- Included with the unit
- ---- Hydraulic module (unit with hydraulic module option 116A & 116W)


NOTES:

- The system must be protected against frost.
- The unit's hydraulic module and the water heat exchanger may be protected against freezing using electric heaters and heat trace cables (factory-fitted options 41A & 41B).
- The pressure sensors are assembled on connections without Schrader.
 Depressurise and drain the system before any work.

8.3 - Tightening the screws on the evaporator water boxes

The evaporator is of the shell and tube type with removable water boxes to facilitate cleaning. Before the unit is first filled with water, or after cleaning, tighten or re-tighten the boxes as per the diagram below.

Water box tightening sequence

Key

① Sequence 1: 1 2 3 4 Sequence 2: 5 6 7 8 Sequence 3: 9 10 11 12 Sequence 4: 13 14 15 16

② Tightening torque Bolt rating M16 - 171 - 210 Nm

NOTE: During this procedure, we recommend that the circuit is drained and the pipes are disconnected to ensure that the bolts are tightened correctly and uniformly.

8.4 - Flow rate detection

All the units are equipped as standard with a flow switch set in the factory (according to the size of the unit and the application). If adjustment is necessary, it must be performed by qualified personnel, approved by Carrier Service.

The heat-transfer fluid pump must be controlled by the chiller if the unit is not equipped with the hydraulic module option.

Dedicated terminals are provided for connection to the pump control (wiring from chiller to pump control panel by others).

IMPORTANT: The water flow switch for the machine must be operational. The Carrier warranty will be voided if this instruction is not adhered to.

8.5 - Frost protection

WARNING: Damage caused by frost is not covered by the warranty.

The evaporator, the pipes, and the hydraulic module pumps can be damaged by frost. The components of the unit (evaporator & hydraulic module) will be protected by following the recommendations below. Protection of the remainder of the system is the responsibility of the installer.

8.5.1 - Standard machine

If the chiller or the water pipes are in an area where the ambient temperature is liable to fall below 0°C, it is recommended that antifreeze solution is added (maximum of 45%, 40% for a unit with a hydraulic module) to protect the unit and the water pipes to a temperature of 10 K below the lowest temperature likely to be reached at the installation site.

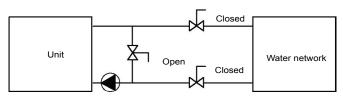
Only use antifreeze solutions approved for use with heat exchangers. If antifreeze solution is not added to the circuit, and the unit is not intended to be operated during freezing conditions, the evaporator, the hydraulic module, and the outside pipes must be drained. Check that there are no retention points.

8.5.2 - Frost protection heater option

In cases where it is not possible to apply the recommendations in the paragraph above (§ 8.5.1), the units can be equipped with heaters to protect the evaporator and the hydraulic module against frost (option 41A or 41B).

The antifreeze solution and the heaters can be combined.

Protecting units with a hydraulic module against frost requires water circulation in the hydraulic circuit. The unit pump will start up automatically at regular intervals.


Combination of options for the periods when the machine is in standby mode

Ambient unit	30KAV/30KAVP 500-1100	30KAV/30KAVP 500-800
temperature range	without option 116	with option 116
> 0 °C to 48 °C	-	-
-20 °C to 0 °C	Option 41A or Appropriate antifreeze solution (for example glycol)	Option 41B ⁽¹⁾ or Appropriate antifreeze solution (for example glycol) ⁽¹⁾

 Allow the pumps to circulate. If there is a valve, install a bypass (see diagram for winter position).

If the system is isolated by a valve, it is imperative to install a bypass as indicated below.

Winter position

IMPORTANT: Depending on the atmospheric conditions in your region, you need to:

- Add ethylene glycol in a suitable concentration to protect the installation.
- Where applicable, if a long period without use is expected, drain and, as a safety measure, add ethylene glycol to the exchanger via the drain valve located on the water inlet (a drain is available on the water boxes either side of the exchanger if the machine is not perfectly level).
- To prevent corrosion due to differential aeration, any heat-transfer medium circuits drained for longer than 1 month should be protected with a blanket of dry, inert gas (0.5 bar maximum). If the heat-transfer fluid does not meet the recommendations, a nitrogen blanket must be applied immediately.
- At the commencement of the next season, fill the system with water treated with appropriate corrosion inhibitors.
- If additional equipment is added to the system, the installer must comply with the basic recommendations, especially the minimum and maximum flow rates which must be between the values shown in the operating limits table (application data).
- If frost protection is dependent on electric heaters, never de-energize the unit when frost protection is required.
- To enable this, the unit's main disconnect switch and the auxiliary circuit breakers protecting the heaters must be left closed (see the wiring diagram for the location of these components).
- If it is not to be used in freezing conditions, or during a prolonged period without power (whether or not this is scheduled), the evaporator and the outside pipes must be drained without delay

- In case of prolonged non-usage, the hydraulic circuits must be protected by circulating a passivating solution. (Consult a specialist).
- The evaporator temperature sensors are an essential frost protection element: if piping trace heaters are used, ensure the external heaters do not affect the measurements provided by these sensors.

To check the heater circuit is "operational". See Section 13 - "Standard maintenance".

8.6 - Protection against cavitation (with option 116)

To ensure the durability of pumps fitted within the integrated hydraulic modules, the control algorithm for units includes protection against cavitation. It is therefore necessary to ensure a minimum pressure at the pump inlet both when shut down and during operation (see Chapter 9.2 - "NPSH"). A pressure below the predefined threshold will prevent unit start-up, or will cause an alarm and shut-down. Before complete shutdown following an alarm, the user interface will give an advance warning that this threshold has been exceeded.

To obtain an adequate pressure, it is recommended:

- that the hydraulic circuit is pressurised between 100 kPa (1 bar) and 400 kPa (4 bar) maximum at the pump inlet,
- that the hydraulic circuit is cleaned when filled with water or when modified.
- that the screen filter is cleaned regularly.

8.7 - Adjusting the installation nominal water flow rate

Refer to the schematic diagram in the "Water connections" paragraph for all item references in this chapter.

The water circulation pumps of the unit range have been designed to allow the hydraulic modules to operate in all possible configurations depending on the specific system conditions, i.e. with water inlet/outlet temperature differences (Delta T) at full load from 3 to 10 K.

This temperature difference required between the water inlet and outlet determines the nominal flow rate of the system. Use the specification provided when selecting the unit to determine the system's operating conditions.

In particular, collect the data necessary for setting the installation flow rate:

- Unit without hydraulic module: the nominal pressure drop at the evaporator connections. This is measured with pressure differential gauges that must be installed at the unit's inlet and outlet (item 16).
- Unit with variable speed pump control on temperature difference: nominal Delta T at the evaporator.
- Unit with variable speed pump control on constant outlet pressure: pressure at the hydraulic module outlet.
- Unit with variable speed pump control on pressure differential: Delta P at the hydraulic module connections.
- Unit with variable speed pump control on fixed speed: nominal flow rate.

If this information is not available when the system is commissioned, contact the engineering and design department responsible for the system to obtain it.

Flow rates for a delta T of 5K at the evaporator can be found in the product technical literature. Flow rates for any other delta T (between 3K and 10K) can be obtained from the "Electronic Catalogue" selection program.

8.7.1 - Units without hydraulic module

General information

The nominal flow rate of the installation will be set using a manual valve that should be installed on the water outlet piping (item 18).

Due to the pressure drop it generates on the hydraulic network, this flow control valve is used to set the network pressure/flow rate curve to the pump pressure/flow rate curve, to obtain the nominal flow rate at the desired operation point.

This will be checked using the reading for the pressure drop in the unit (evaporator).

As the exact total installation pressure drop is not known prior to commissioning, it is necessary to adjust the water flow rate with the control valve (item 18) to obtain the installation's specific flow rate.

Hydraulic circuit cleaning procedure

- Open all control valves completely (item 18).
- Start up the system pump.
- Read the evaporator pressure drop as the difference on the pressure gauge connected to the unit inlet then the outlet (item 16).
- Let the pump run for 2 hours continuously to flush the system's hydraulic circuit (presence of contaminating solids).
- Perform another reading.
- Compare this value to the initial value.

An increasing Delta P value indicates that the filters on the installation need to be removed and cleaned. In this case, close the shut-off valves on the water inlet and outlet (item 19). Remove then clean the filters (item 1) after draining the hydraulic part of the unit (item 9).

Purge the air from the circuit (item 10).

Repeat until all fouling is removed from the filter.

Water flow rate adjustment procedure

Once the circuit is cleaned, read the pressures on the pressure gauges (water inlet and outlet pressure) to determine the pressure drop at the evaporator terminals. Compare the value obtained with the design value predicted by the selection software.

If the pressure drop reading is above the specified value, this indicates that the flow rate at the terminals of the unit (and therefore within the system) is too high. In this case, close the control valve (item 18) and read the new pressure difference. Repeat as necessary, closing the control valve until the specific pressure drop corresponding to the unit's nominal flow rate at the design point is achieved.

Note: If the network has an excessive pressure drop in relation to the available static pressure delivered by the system pump, the nominal water flow cannot be obtained (lower resulting flow) and the difference in temperature between the water inlet and outlet of the evaporator will be increased.

To reduce the hydraulic system pressure drop:

- Reduce the pressure drops of individual components (elbows, level changes, options, etc.) as much as possible,
- Use the correct pipe diameter,
- Do not extend the hydraulic systems.

8.7.2 - Units with hydraulic module and variablespeed pump - Temperature differential control

The system flow rate has not been set to a nominal value.

The flow rate will be adjusted, by varying the pump speed, to maintain a evaporator Delta T value defined by the user.

This is checked by the temperature sensors at the evaporator inlet and outlet (items 7 and 11).

The system reads the measured temperature values, calculates the corresponding Delta T°, compares it with the setpoint value set by the user and then modulates the pump speed.

- This results in an increase in the flow rate if the Delta T° exceeds the setpoint.
- This results in a decrease in the flow rate if the Delta T° is less than the setpoint.

This modulation is limited only by the maximum and minimum flow rates for the unit and by the maximum and minimum allowable pump speeds.

The resulting Delta T° may, in certain cases, differ from the setpoint value:

- If the setpoint value is too high (corresponding to a flow rate lower than the minimum value or a frequency less than the minimum value), the system will be limited to the minimum flow rate or minimum frequency, which will result in a Delta T below the setpoint,
- If the setpoint value is too low (corresponding to a flow rate higher than the maximum value or a frequency greater than the maximum value), the system will be limited to the maximum flow rate or maximum frequency, which will result in a Delta T above the setpoint.

Contact the manufacturer's service department to implement the procedures described below.

Hydraulic circuit cleaning procedure

Before proceeding, it is advisable to remove any possible contamination from the hydraulic circuit.

- Start-up the system pump by using the forced start command.
- Control the frequency to the maximum value to generate the highest possible flow.
- If there is a "Maximum flow exceeded" alarm, reduce the frequency until an acceptable value is reached.
- Read the value of the flow on the user interface.
- Let the pump run for 2 hours continuously to flush the system's hydraulic circuit (presence of contaminating solids).
- Perform another reading of the flow and compare this value with the initial value. A reducing value of the flow indicates that the filters on the system need to be removed and cleaned. In this case, close the shut-off valves on the water inlet and outlet (item 19) and remove the filters (item 1) after draining the hydraulic part of the unit (items 2 and 9).
- Purge the air from the circuit (items 10 and 23).
- Repeat until all fouling is removed from the filter

Procedure for controlling the Delta T° setpoint

Once the circuit is cleaned, stop the forced start of the pump and proceed to the configuration of the unit for the required control mode.

Modify the control parameters:

- Water flow rate control method (Delta T)
- Required Delta T value.
- If necessary, the control PID parameters can also be adjusted (refer to the control manual).

8.7.3 - Units with hydraulic module and variablespeed pump - Control on constant water outlet pressure

The system flow rate has not been set to a nominal value.

It will be adjusted by the system, by varying the pump speed, to maintain a constant pressure value at the unit outlet, defined by the user.

This is checked by the pressure sensor at the hydraulic module outlet (item 12).

The system measures the pressure, compares it with the setpoint value set by the user and then modulates the pump speed module accordingly:

- This results in an increase in the flow rate if the measurement is below the setpoint,
- This results in a decrease in the flow rate if the measurement exceeds the setpoint.

This modulation is limited only by the maximum and minimum flow rates for the unit and by the maximum and minimum allowable pump speeds.

The maintained LWP (Leaving Water Pressure) value may, in certain cases, differ from the setpoint value:

- if the setpoint value is too high (corresponding to a flow rate higher than the maximum value or a frequency greater than the maximum value), the system will be limited to the maximum flow rate or maximum frequency, which will result in a water outlet pressure below the setpoint,
- if the setpoint value is too low (corresponding to a flow rate lower than the minimum value or a frequency less than the minimum value), the system will be limited to the minimum flow rate or minimum frequency, which will result in a water outlet pressure greater than the setpoint.

Contact the manufacturer's service department to implement the procedures described below

Hydraulic circuit cleaning procedure

Refer to the hydraulic circuit cleaning procedure.

Procedure for controlling the water outlet pressure setpoint

Once the circuit is cleaned, place the hydraulic circuit in the configuration for which the unit selection was performed (generally all valves open and all cooling coils active).

Read the value of the flow on the user interface and compare it with the theoretical value of the range:

- If the flow rate read is greater than the specified value, reduce the water outlet pressure setpoint on the user interface to reduce the flow rate value:
- If the value of the flow is lower than the specified value, increase the water outlet pressure setpoint on the user interface to increase the value of the flow.

Repeat until the unit's nominal flow rate at the required operation point is achieved.

Stop the forced operation of the pump and proceed to the configuration of the unit for the required control mode.

Modify the control parameters:

- Water flow rate control method (fixed pressure)
- Required LWP value
- If necessary, the control PID parameters can also be adjusted (refer to the control manual)

NOTE: If, during adjustment, the low or high frequency limits are reached before reaching the specified flow rate, keep the outlet pressure value at its lower or higher limit as the control set point.

8.7.4 - Units with hydraulic module and variablespeed pump - Pressure differential control

The system flow rate has not been set to a nominal value.

This will be adjusted by the system, by varying the pump speed, to maintain a constant Delta P value defined by the user.

This is checked by the pressure sensors at the hydraulic module inlet and outlet (items 4 and 12).

The system calculates the value for the measured pressure difference, compares it with the setpoint value set by the user and then modulates the pump speed module accordingly.

- This results in an increase in the flow rate if the measurement is below the setpoint,
- This results in a decrease in the flow rate if the measurement exceeds the setpoint.

This modulation is limited only by the maximum and minimum flow rates for the unit and by the maximum and minimum allowable pump speeds.

The maintained Delta P may, in certain cases, differ from the setpoint value:

- If the setpoint value is too high (corresponding to a flow rate higher than the maximum value or a frequency greater than the maximum value), the system will be limited to the maximum flow rate or maximum frequency, which will result in a Delta P below the setpoint.
- If the setpoint value is too low (corresponding to a flow rate lower than the minimum value or a frequency less than the minimum value), the system will be limited to the minimum flow rate or minimum frequency, which will result in a Delta P above the setpoint,

Contact the manufacturer's service department to implement the procedures described below

Hydraulic circuit cleaning procedure

Refer to the hydraulic circuit cleaning procedure.

Procedure for controlling the pressure differential setpoint

Once the circuit is cleaned, place the hydraulic circuit in the configuration for which the unit selection was performed (generally all valves open and all cooling coils active).

Read the value of the flow on the user interface and compare it with the theoretical value of the range:

- If the flow rate read is greater than the specified value, reduce the Delta P setpoint on the user interface to decrease the flow rate value.
- If the flow rate read is less than the specified value, increase the Delta P setpoint on the user interface to increase the flow rate value

Repeat until the unit's nominal flow rate at the required operation point is achieved.

Stop the forced operation of the pump and proceed to the configuration of the unit for the required control mode.

Modify the control parameters:

- Water flow rate control method (Delta P),
- Required Delta P set point.
- If necessary, the control PID parameters can also be adjusted (refer to the control manual).

NOTE: If, during adjustment, the low or high frequency limits are reached before reaching the specified flow rate, keep the pressure differential value at its lower or higher limit as the control set point.

If the user knows in advance the pressure differential value at the unit outlet to be maintained, this value can be entered directly as data to be declared. However, the hydraulic circuit cleaning sequence must not be omitted.

8.7.5 - Units with hydraulic module and variablespeed pump - Setting a fixed flow rate for the system

The flow will be set to a nominal value. This value will remain constant and will not be dependent on variations in the system's load.

Contact the manufacturer's service department to implement the procedures described below.

Hydraulic circuit cleaning procedure

Refer to the hydraulic circuit cleaning procedure.

Procedure for controlling the flow rate

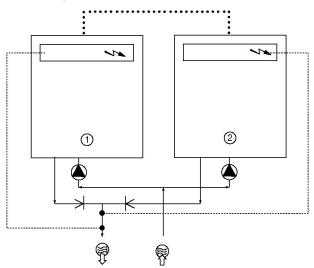
Once the circuit has been cleaned, set the required water flow rate by adjusting the pump frequency on the user interface.

Stop the forced operation of the pump and proceed to the configuration of the unit for the required control mode.

Modify the control parameters:

- Water flow rate control method (fixed speed),
- Constant frequency value.

8.8 - Operation of two units as a master/slave pair (option 58)


The master-slave pair is controlled on the water inlet without any additional sensors being added (standard configuration). It is also possible to control on the water outlet by adding two additional sensors in the common supply pipe work.

All the parameters required for the master/slave function must be configured using the MST_SLV configuration menu. All remote controls of the Master/Slave pair (start/stop, setpoint, load shedding, etc.) are managed by the unit configured as the master and must only be applied to the master unit.

Each unit controls its own water pump. If there is only one common pump, in cases with a variable flow, isolation valves must be installed on each unit. These should be controlled (opened and closed) using the controls for the relevant unit (in this case, valves will be controlled using the dedicated water pump outputs). Refer to the SmartView control manual for a more detailed explanation.

WARNING: To permit Master/Slave operation both units must be equipped with option 58.

Configuration: control on the water outlet

Key

(1)

Master unit

Slave unit

Control panels for Master and Slave units

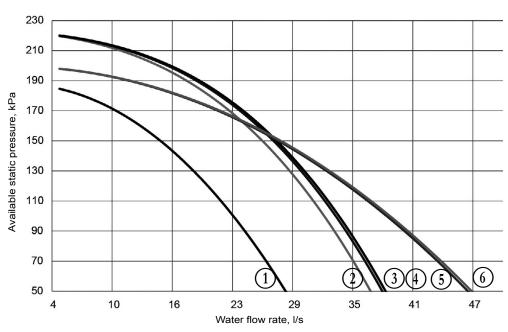
Water inlet

Water outlet

Water pumps for each unit (included as standard in units with hydraulic module)

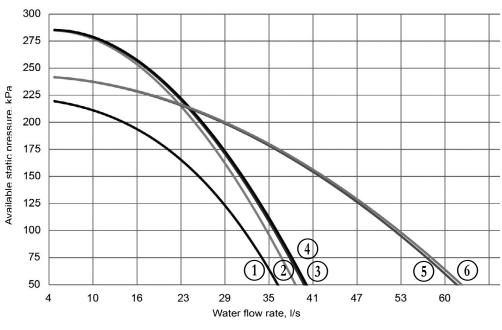
 Additional sensors for the control of the leaving water temperature to be connected on channel 1 of the slave boards of both Master and Slave unit

••• Communication bus CCN


Connection of two additional sensors

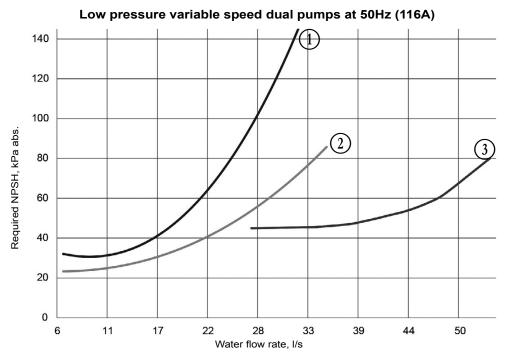
9.1 - Available static pressure for the system

Data applicable for:

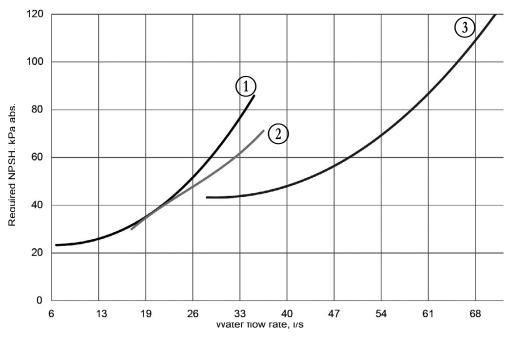

- Fresh water 20 °C.
- Variable speed pump at 50 Hz.
- Refer to the paragraph on "Water exchanger min. water volume and flow rate" for the maximum water flow rate values.
- If ethylene glycol is used, the maximum flow rate is reduced.
- For an ambient temperature over 40°C, the maximum water flow rate is limited.

Low pressure variable speed dual pumps at 50Hz (116A)

- 30KAV/30KAVP 500
 30KAV/30KAVP 550
- 3 30KAV/30KAVP 6004 30KAV/30KAVP 650
- ⑤ 30KAV/30KAVP 720
- 30KAV/30KAVP 800


High pressure variable speed dual pumps at 50Hz (116W)

- ① 30KAV/30KAVP 500
- ② 30KAV/30KAVP 550
- 3 30KAV/30KAVP 6004 30KAV/30KAVP 650
- ⑤ 30KAV/30KAVP 720
- 30KAV/30KAVP 800


9.2 - Required NPSH (Net Positive Suction Head); Hydraulic module option

The hydraulic circuit must be designed to ensure that the NPSH (Net Positive Suction Head) is greater than or equal to the required NPSH + 50 kPa.

- ① 30KAV/30KAVP 500
- ② 30KAV/30KAVP 550-600-650
- 3) 30KAV/30KAVP 720-800

High pressure variable speed dual pumps at 50Hz (116W)

- ① 30KAV/30KAVP 500
- ② 30KAV/30KAVP 550-600-650
- ③ 30KAV/30KAVP 720-800

9.3 - Flow rate calculation

Units equipped with the hydraulic module enable the flow rate to be monitored directly via the unit's user interface (see the control manual).

The pressure of the fluid is measured by the pressure sensors at the inlet of the pump and outlet of the unit. The system calculates the flow rate corresponding to measured differential pressure.

The calculations are only applicable for cold water. For a brine solution (e.g.: glycol) other than cold water, the calculated flow rate will not be accurate.

These values are given as a guide for the user and may vary depending on fouling of the hydraulic circuit and correct operation of the pump. The manufacturer cannot be held liable for the accuracy of this information.

10.1 - Checks before system start-up

Before commissioning the chiller the complete system must be verified against the installation drawings, dimensional drawings, system piping and instrumentation diagrams and the wiring schematics. All measures must be taken to ensure that the pressure and temperature limits, specifically those listed on the unit nameplates, are not exceeded during operation, maintenance and recycling. Heat exchange fluid temperatures above the maximum recommended can lead to an increase in the refrigerant pressure and can cause a loss of refrigerant due to the relief valve discharge. National regulations must be followed during these checks. If the national regulation does not specify any details, refer to standard EN 378 as follows:

External visual installation checks:

- Ensure that the machine is charged with refrigerant. Verify on the unit name plate that the 'fluid transported' is that recommended for operation, and is not nitrogen.
- Compare the complete system with the cooling system and power circuit diagrams.
- Check that all documents provided by the manufacturer (dimensional drawings, pipe and instrument diagram (PID), declarations, etc.) to comply with the regulations are present. If any documentation is missing, order a replacement.
- Verify that the environmental protection and safety devices and arrangements provided by the manufacturer to comply with the regulations are in place and compliant.
- Check that all declarations of conformity for the pressure vessels, identification plates, and documentation required to comply with local regulations are present.
- Verify that access and safety routes are unobstructed.
- Verify the instructions and directives to prevent the deliberate removal of refrigerant gases.
- Verify the installation of connections.
- Verify the supports and fixing elements (materials, routing and connection).
- Verify the quality of welds and other joints.
- Check the protection against mechanical damage.
- Check the protection against heat.
- Check the protection of moving parts.
- Verify the accessibility for maintenance or repair and to check the piping.
- Verify the status of the valves.
- Verify the quality of the thermal insulation.
- Check the condition of 400 V cable insulation.

IMPORTANT: If the compressors are equipped with anti-vibration mounts, check whether these mounts have clamping mechanisms. If they do, the clamping mechanisms must be removed before system start-up. Clamping mechanisms are identified by red collars and by a label affixed to the compressor sub-assembly.

10.2 - Commissioning

Always ensure you have read and fully understood the operating instructions for the units before starting up the unit, and ensure the following precautions have been taken:

- Check the heat transfer fluid circulation pumps, the air handling equipment, and any other equipment connected to the system.
- Refer to these instructions.
- Refer to the electrical diagram delivered with the unit.
- Ensure that there is no refrigerant leak.
- Check that all clamps securing the pipes are correctly tightened.
- Check the power supply at the main connection point and the order of phases.
- Open the suction shut-off valves on each circuit for the corresponding machines.
- For units without the factory-fitted hydraulic module option, the installer is responsible for insulation and frost protection and the connections relating to the system pump.
- Check the operation of the oil heaters (present on the oil separator) 24 hours before starting up the system.

IMPORTANT: Commissioning and start-up must be supervised by a qualified engineer.

- The system must have a heat load and water flowing in the exchangers when it is started up and tested.
- All setpoint adjustments and control tests must be carried out before the unit is started up.
- Refer to the Service guide.

Proceed with the unit commissioning.

Ensure that all safety devices are operational, checking specifically that the high pressure switches are activated and that any alarms have been cleared.

NOTE: If the manufacturer's recommendations (system, water and power connections) are not observed, no claims made under the warranty will be accepted.

10.3 - Essential points to check

10.3.1 - Compressors

Ensure that each compressor is rotating in the correct direction, by checking that the discharge temperature rises quickly, the HP increases and the LP drops. If it is rotating in the wrong direction, the electric power supply is incorrectly wired (reversed phases). To ensure rotation in the correct direction, swap two power supply phases.

- Check the compressor discharge temperature with a contact sensor
- Check the input current; it should be normal
- Check all safety devices to make sure they operate correctly

10.3.2 - Hydraulics

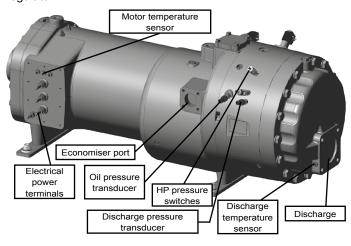
As the exact total system pressure drop is not known at commissioning, adjust the flow of water with the control valve until the desired nominal rate is obtained.

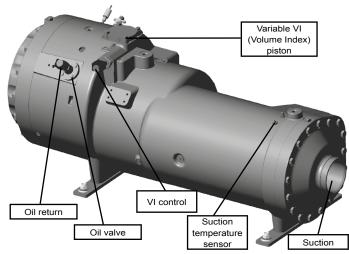
By modifying the pressure drop in the hydraulic network, the control valve aligns the system pressure/flow curve with that of the pump so that the nominal flow rate corresponding to the desired operating point is obtained. The pressure drop in the water exchanger (read using the pressure gauge placed on the exchanger inlet and outlet) is the reference to be used to check and adjust the nominal flow rate of the system.

Follow the procedure described below:

- Open the control valve completely
- Let the pump run for two hours to flush out any solid particles in the circuit
- Read the pressure drop in the water exchanger when the pump is turned on and then two hours afterwards
- If the pressure drop has decreased, this means that the screen filter is clogged. It must be removed and cleaned
- Repeat until the filter is completely clean
- If the system pressure drops are above the available static pressure delivered by the pump, the resulting water flow rate will be low and the difference in temperature between the exchanger inlet and outlet will be too high. This is why pressure drops must be minimised. Make sure this difference is within the values on the curve (refer to the chapter "Water type heat exchanger water flow")

10.3.3 - Refrigerant charge


Each unit is shipped with an exact charge of refrigerant (see the table of physical properties).


10.3.4 - Ventilation for electrical cabinets

Check that the air flows from the cooling fans are directed from the outside of the cabinets to the inside (ensuring fresh air is drawn towards the inside).

11.1 - Compressors

30KAV units use 06Z twin-screw compressors fitted with an asynchronous motor. 30KAVP units use 06Z twin-screw compressors fitted with a synchronous motor featuring a permanent magnet. All these units are controlled by a speed regulator.

On the compressor with a synchronous motor featuring permanent magnets (30KAVP), it is prohibited to attempt to remove the motor from the compressor, owing to its strong magnetic field.

11.2 - Oil filter

The 06Z screw compressor has an independent oil filter mounted on to the oil separator. This filter is field replaceable.

11.3 - Refrigerant

This document concerns the version of the 30KAV which operates using R134a only.

11.4 - Lubricant

The 06Z screw compressor is approved for use with the following lubricants:

Castrol Icematic SW220 = Lubrizol Emkarate RL 220H Plus (Carrier material specification PP 47-32).

Lubrizol Emkarate RL 220H (Carrier material specification PP 47-13).

CAUTION: Too much oil in the circuit can cause the unit to malfunction.

11.5 - Oil supply solenoid valve

An oil supply solenoid valve is installed on the oil return line as standard to isolate the compressor from oil flow when the compressor is not operating. The oil solenoid valve is field replaceable.

11.6 - Economiser and suction filters

To improve the reliability of the compressor, filters are fitted on the compressor suction connection and economiser port, as standard.

11.7 - Pressure vessels

11.7.1 - General information

Monitoring during operation, re-qualification, re-testing, exemption from retesting:

- Follow the regulations on monitoring pressure equipment.
 The user or operator is usually required to create and maintain a monitoring and maintenance log.
- In the absence of any regulations, or in addition to the regulations, follow the guidance in EN 378.
- Follow the local professional recommendations, whenever they exist.
- Regularly inspect the condition of the coating (paint) to detect blistering resulting from corrosion. To do this, check an uninsulated part of the vessel, or for rust drips at a joint in the insulation.
- Regularly check for the presence of any impurities (e.g. sand, grit) in the heat transfer fluids. These impurities can cause wear and/or pitting corrosion.
- Filter the heat-transfer medium and carry out internal inspections as described in EN 378-2 Appendix C.
- In case of re-testing, please refer to the maximum differential pressure given on the unit nameplate.
- The reports of the periodic checks by the user or the operator must be included in the monitoring and maintenance register.

11.7.2 - Repairs

Any repair or modification, including replacement of removable parts:

- Must comply with local regulations and must be performed by qualified operators in accordance with qualified processes, including changing a wiring harness conductor,
- Must be approved by the original manufacturer. Repairs and modifications which involve a permanent assembly (welding, soldering, expansion of tubes, etc.) must be performed by qualified operators following the operating procedures,
- All modifications and repairs must be listed in the monitoring and maintenance register.

11.7.3 - Recycling

The device is wholly or partly recyclable. After use, it contains refrigerant vapours and oil residue. It is coated in paint.

11.7.4 - Corrosion build-up

Gas side: 0 mm

Heat-transfer medium side: 1 mm for tube sheets in lightly alloyed steels, 0 mm for stainless steel plates or plates with copper-nickel or stainless steel protection.

11.7.5 - Evaporator

30KAV/30KAVP chillers use a flooded shell-and-tube evaporator, the water (heat-transfer medium) circulates in the tubes and the refrigerant is inside the shell. A single shell is used to serve both refrigerant circuits. There is a centre tubular plate which separates the two refrigerant circuits. The tubes are copper, and 3/4" in diameter, with a finned surface inside and out. There is just one hydraulic circuit with two water passes.

The evaporator has been tested and stamped in accordance with the applicable pressure code. The maximum standard operating pressures are 2100 kPa relative for the refrigerant side and 1000 kPa relative for the water-side. These pressures may differ according to the regulation and the code applied.

The evaporator has thermal insulation formed of 19 mm thick polyurethane foam and aluminium cladding (optional), and is equipped with a water drain plug and a vent.

The heat exchanger water connections are Victaulic type connections. As an option, the evaporator is equipped with frost protection ("evaporator frost protection" option).

Products used for the thermal insulation of components during hydraulic connection must have a chemically neutral effect on the surfaces to which they are applied. All original materials supplied by Carrier comply with this requirement.

11.7.6 - Oil separator

On these units, the oil separator is a pressure vessel which is mounted underneath the condenser coils, at the compressor discharge. The gas discharged at the compressor outlet is directed to the oil separator and most of the oil is separated from the gas by a process of rapid deceleration and gravity. The gas is then directed to a mesh filter where the remaining oil is separated by coalescence, and flows to the bottom of the vessel. The oil-free gas exits via the top of the vessel towards the condenser.

The oil separator is equipped with a heater cable managed by the control system. The oil separator also has a built-in silencer.

11.7.7 - Economiser function

The economiser function includes a liquid valve, a dehumidifier filter, two electronic expansion valves (EXVs), a plate heat exchanger, and protection devices (fusible plug or valve).

At the condenser outlet, some of the liquid is expanded via the secondary EXV in one of the plate heat exchanger circuits and then is returned to the compressor economiser as a gas. This expansion provides an increase in the liquid subcooling of the rest of the refrigerant entering the evaporator via the principal EXV. This enables the system's cooling capacity and efficiency to be improved.

11.8 - High Pressure SRMCR safety loop

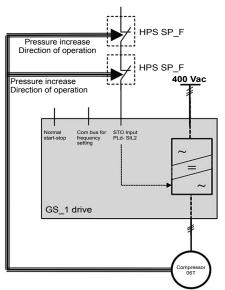
11.8.1 - General description

The unit is equipped with a high pressure safety loop, known as the SRMCR (Safety-Related Measurement Control and Regulation) loop, comprising:

- 2 high pressure switches (HPS) that require resetting with a tool at the outlet for each compressor called PZHH
- The speed regulator which supplies the compressor is equipped with the Safe Torque Off (STO) function.

Refer to the wiring diagram and the nomenclature for the machine (references).

This SRMCR device is designed in accordance with standard EN 61508 for SIL (safety integrity level): 2.


Demand mode: low and high.

The mission time is 20 years.

Periodic testing: the test must be performed at least once a year during the normal periodic pressure test. Refer to the description in section 13.11.

11.8.2 - Description of operation and resetting

The image below is intended to illustrate the operating description: refer to the detailed machine drawing for the precise wiring diagram.

HPS: High pressure switch SP1F(A)/SP2F(A) GS_1: Power drive for compressor GSA1/GSB1

During normal operation, the speed regulator supplies and controls the compressor once the control signal is received via the digital on-off input (normal on-off) and the communication bus (setting the frequency).

When one of the HPS sensors opens, the STO (Safe Torque Off) digital input opens, which instantly suppresses the control command for the thyristors which manage the supply for the compressor, independently of the on-off commands and frequencies: the compressor is no longer supplied and stops immediately.

11.8.3 - Restarting after high pressure is detected

After overpressure is detected, it is necessary to manually reset the switched HPS. A blunt tool with a diameter of less than 6 mm must be used for this.

11.8.4 - Verification in case of a safety device failure

If the unit operating pressure appears to have been exceeded at some point (for example, after the relief valves have been opened), the unit must be stopped immediately.

The safety loop unit must pass all the periodic verifications before any restart is possible.

If the test reveals malfunctions likely to have caused overpressure within the machine, a complete check of all the pressure equipment must be performed to check their mechanical integrity.

11.9 - Condensers

The coils in the units are micro-channel condensers made entirely of aluminium.

11.10 - Fans

The fan motors are axial Flying Bird fans equipped with a rotating shroud and made of composite recyclable material. Each motor is fixed with transverse supports.

All the fans in the same refrigerating circuit run together at the same rotation speed. The fan speed is controlled by an algorithm that continuously optimises the condensing temperature to obtain the best energy efficiency (EER) for the units, whatever the operating conditions.

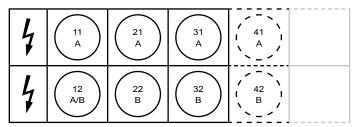
11.10.1 - AC motors

The standard units are equipped with AC motors, controlled by one or more variable speed drives. The motors are three-phase, with lifetime lubricated bearings and class F insulation (IP55 level).

In case of a locked rotor or an overload, the motors of each circuit are electrically protected by the circuit's variable drives. Each variable drive follows an overcurrent curve, which varies according to the frequency from 5 to 50 Hz and the number of fans controlled.

If a fan fails to operate (in open circuit), the lack of current is detected, generating an alert on the user interface. Refer to the control manual for the description of alarms specific to this option.

11.10.2 - EC motors


On 30KAV units with options 17 or 119+, and on 30KAVP units, the fans are driven by EC motors (electronically commutated motors). These are motors with permanent magnets, equipped with their own embedded electronics which enables the speed to be varied and also provides protection.

These motors are more efficient than asynchronous motors.

The speed is controlled by analogue voltage in the range 0-10Vdc. The motors for each refrigerating circuit are controlled by the same 0-10 Vdc control signal. They are supplied with a three-phase 400V AC power supply, and the order of phases has no impact on the direction of rotation, as this is factory-set.

11.10.3 - Distribution of fans within the machine

The distribution of fans for the refrigerating circuits and their description is given below (simplified representation on the machine seen from above):

Warning: the fan listed as 12 may be allocated to circuit A or to circuit B, depending on the machine. It may be powered by the variable drives from one or other of these circuits: refer to the wiring diagram for the unit.

According to the Regulation No. 327/2011 implementing Directive 2009/125/EC with regard to ecodesign requirements for fans driven by motors with an electric input power between 125 W and 500 kW.

30KAV		30KAV Standard	30KAV Options 17 / 119+ 30KAVP
Overall efficiency	%	40,1	47,3
Measurement category		Α	Α
Efficiency category		static	static
Target efficiency level ERP2015		N(2015) 40	N(2015) 40
Efficiency level at the optimum efficiency point		44,6	52,2
Speed regulator		YES	YES (built-in)
Year of manufacture		See label on the unit	See label on unit
Fan manufacturer		Simonin	Simonin
Motor manufacturer		Leroy Somer	EBM PAPST
Fan Part Number		00PSG002630700A	00PSG002630700A
Motor Part Number		00PPG000558700A	00PSG002696800A
Nominal motor capacity	kW	1,96	1,68
Flow rate	m³/s	4,22	4,24
Pressure at optimum energy efficiency	Pa	174,2	174,6
Nominal Speed	rpm	948	959
Specific ratio		1,002	1,002
Relevant information to facilitate the disassembly, recycling or removal of the product at the end of life		See the Maintenance manual	See the Maintenance manual
Relevant information to minimise the impact on the environment		See the Maintenance manual	See the Maintenance manual

11 - MAJOR SYSTEM COMPONENTS AND OPERATION DATA

According to regulation No. 640/2009 and amendment 4/2014 implementing directive 2009/125/EC with regard to ecodesign requirements for electric motors.

30KAV		30KAV Standard	30KAV Options 17 / 119+ 30KAVP
Motor type		Asynchronous	EC motor
Number of poles		6	6
Nominal input frequency	Hz	50	50/60
Nominal voltage	V	400	380/480
Number of phases		3	3
Motor included in the application domain of the regulation 640/2009 and amendment 4/2014		NO	NO
Sales leaflet for exemption		Article 2.1	Article 2.1
Ambient air temperature for which the motor is specifically designed	°C	70	70

11.11 - Electronic expansion valve (EXV)

The EXV is equipped with a stepper motor (2785 to 3690 steps, depending on the model) that is controlled via an electronic circuit board.

The EXV is also equipped with a sight glass used to check the mechanism movement and the presence of the liquid seal.

11.12 - Moisture indicator

Located on the EXV, this enables the unit charge to be controlled and indicates moisture in the circuit.

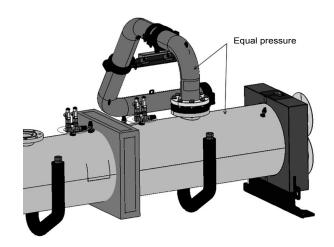
The presence of bubbles in the sight-glass indicates an insufficient charge or non-condensables in the system.

The presence of moisture changes the colour of the indicator paper in the sight-glass.

11.13 - Dehumidifier filter

The role of the dehumidifier filter is to keep the circuit clean and moisture-free. The moisture indicator shows when it is necessary to change the element. A difference in temperature between the filter inlet and outlet shows that the element is dirty.

11.14 - Sensors


The unit uses thermistors to measure temperature, and pressure transducers to monitor and control the operation of the system. Refer to the SmartView control manual for a more detailed explanation.

11.15 - Service valves (option 92)

The unit can be equipped with optional service valves to facilitate maintenance and repair operations.

If option 92 is ordered, each refrigerating circuit will be equipped with isolation valves on the economiser line, and at the compressor discharge and suction.

WARNING: the valve at the compressor suction only be operated when there is no differential pressure across it. Operating the valve when there is a pressure differential may compromise the valve's sealing or even result in failure.

11.16 - Speed regulator

The units are equipped with variable speed drives for the compressors, condenser fans and pumps. The variable speed drives are integrated into the electrical cabinets. If the fan motors are electronically commutated motors (optional EC motors), there is no corresponding variable speed drive in the electrical cabinet.

The variable speed drive enables the speed of the motors to be selected by adjusting the voltage and frequency by modulating the pulse width (PWM).

The frequency setpoint on the operating range and the status feedback for the variable drives is transmitted by communication via the internal RS485 Bus using the LEN Protocol by the "Carrier controller".

For the compressors, the variable-speed drive provides the unit shut down function via the pressostats cabled to the regulator's digital inputs.

11.17 - Cabinets for the electrical equipment

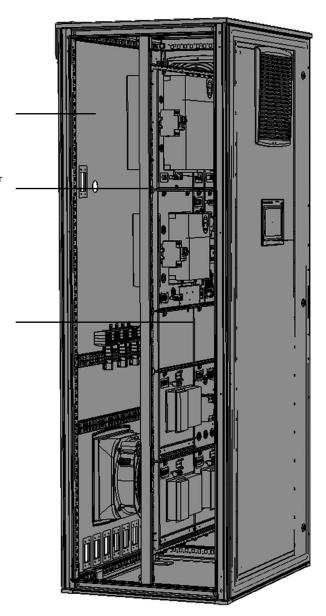
The machines are equipped as standard with two cabinets for the electrical equipment:

A power cabinet for the incoming power supply and the compressor variable-speed drives.

A control cabinet for the control system elements and the variable-speed drives and power circuits for the condenser fans and the water pumps.

In the control cabinet, the components are mounted on a mounting plate which ensures the flow of cooling air from the heat-dissipating

elements is contained in the area to rear of the cabinet. This design means that the mounting plate or the casing panel must be removed to access the equipment which is located in the back of the panel: transformers, power distribution connections and cooling fans; refer to the wiring diagram for the unit.


The mounting plate and the casing panel are designed to be easily removed for servicing operations (see also chapter 13 of this document).

Overall view of the control cabinet with the casing panel removed:

Rear section for components with high heat dissipation

Support plates for components and separation of air flows

Front section for components with low heat dissipation

Option	No.	Description	Advantage	Use with 30KAV
Medium temperature brine solution	5	Implementation of new control algorithms and redesigned evaporator to allow chilled brine solution production down to -8°C when ethylene glycol is used (-5°C with propylene glycol)	Covers specific applications such as ice	0500-1100
Low temperature brine solution down to -15 °C with turbulators	6	Evaporator equipped with turbulators to allow production of chilled water down to -15 °C with low pressure drops on the entire application range (including turbulators, insulation and algorithms).		0500-1100
Light-brine solution, down to -4°C	8	Implementation of new control algorithms to allow chilled brine solution production down to -4 °C when ethylene glycol is used (-2°C with propylene glycol)	for ground sourced heat numbe and fits with	0500-1100
Low noise level	15	Aesthetic and sound absorbing compressor enclosure	Noise level reduction	0500-1100
Very low noise level	15LS	Sound absorbing & aesthetic compressor enclosure and oil separator, evaporator and suction line acoustic treatment, combined with low-speed fans	Noise level reduction in sensitive	0500-1100
High ambient temperature	16	Electrical components sized for part load operation up to 55°C air ambient	Extended unit part-load operation up to 55°C ambient temperature	0500-1100
EC fans	17	Unit equipped with EC fans	Enhances the unit energy efficiency performance	0500-1100
IP54 control box	20A	Increased leak tightness of the unit	Protects the inside of the electrical box from dust, water and sand. In general this option is recommended for installations in polluted environments	0500-1100
Grilles and enclosure panels	23	Metallic grilles on the 4 unit sides and lateral enclosure panels on each end of the coils	Improves aesthetics, protection against intrusion to the unit interior, coil and pipes protection against impacts.	0500-1100
Enclosure panels	23A	Side enclosure panels	Improves aesthetics and piping protection against impacts.	0500-1100
Water exchanger frost protection	41A	Electric resistance heater on the water exchanger and discharge valve	Water exchanger frost protection down to -20°C outside temperature	0500-1100
Evaporator and hydraulic module frost protection	41B	Electric resistance heater on water exchanger, discharge valve and hydraulic module	Water exchanger and hydraulic module frost protection down to -20°C outside temperature	0500-0800
Evaporator and condenser frost protection	41C	Electric heater on the evaporator, the discharge valve and the water type heat exchanger and addition of electric heaters and insulation on the water pipes (option 325)	hetween 0°C and -20°C outside air	0500-1100
Partial heat recovery	49	Unit equipped with a desuperheater on each refrigerant circuit (each exchanger is equipped with electrical heaters and insulation)		0500-1100
Total heat recovery	50	Unit equipped with an additional heat exchanger in series with the condenser coils (each exchanger is equipped with electrical heaters and insulation)	Production of free hot water, adjustable on	0500-1100
Master/slave operation	58	Unit equipped with supplementary water outlet temperature sensor kit to be field-installed allowing master/slave operation of two units connected in parallel	in parallel operation with operating time	0500-1100
Main disconnect switch with short-circuit protection	70D	Circuit breaker equipped with an external disconnect switch handle	Ensure protection of main disconnect switch and associated cables against short-circuits when building devices are not compliant	0500-1100
Evap. and pumps with aluminium jacket	88A	Evaporator and pumps covered with an aluminium sheet for thermal insulation protection		0500-1100
Service valve set	92	Liquid line valve (evaporator inlet) and compressor suction line valve	Allow isolation of various refrigerant circuit components for simplified service and maintenance	0500-1100
Compressor discharge valves	93A	Shut-off valve on the compressor discharge piping	Simplified maintenance	0500-1100
21 bar evaporator	104	Reinforced evaporator for extension of the maximum water-side service pressure to 21 bar (standard 10 bar)	Covers applications with a high water column evaporator side (typically high buildings)	0500-1100

Option	No.	Description	Advantage	Use with 30KAV
LP VSD dual-pump hydraulic mod.	116A	Dual low pressure water pump with variable speed drive (VSD), pressure transducers. Multiple options for water flow control. For more details, refer to the relevant section.	significant reduction in pumping energy	0500-0800
HP variable-speed dual pump.	116W	Dual high pressure water pump with variable speed drive (VSD), pressure transducers. Multiple options for water flow control. For more details, refer to the relevant section (expansion tank not included; option with integrated hydraulic safety components available)	significant reduction in pumping energy consumption level (over two thirds), precise	0500-0800
High Energy Efficiency	119	Additional condenser coil to improve unit energy efficiency	Enhances the unit energy efficiency performance	0500-1100
High Energy Efficiency+	119+	Additional condenser coil surface area and EC motors on the fans to improve unit energy efficiency	Enhances the unit energy efficiency performance	0500-1100
Lon gateway	148D	Bi-directional communication board complying with Lon Talk protocol	Connects the unit by communication bus to a building management system	0500-1100
Bacnet over IP	149	Bi-directional high-speed communication using BACnet protocol over Ethernet network (IP)	Easy and high-speed connection by ethernet line to a building management system. Allows access to multiple unit parameters	0500-1100
Modbus over IP and RS485 communication gateway	149B	Bi-directional high-speed communication using the Modbus over Ethernet network (IP) protocol	Easy, quick connection via Ethernet line to a building technical management system. Allows access to several unit parameters.	0500-1100
Energy Management Module	156	EMM Control board with additional inputs/ outputs. See Energy Management Module option chapter		0500-1100
Input contact for Refrigerant leak detection	159	0-10 V signal to report any refrigerant leakage in the unit directly (the leak detector itself must be supplied by the customer)		0500-1100
Dual relief valve on 3-way valve	194	Three-way valve upstream of dual relief valves on the shell and tubes evaporator	Valve replacement and inspection facilitated without refrigerant loss. Comforms to European standard EN378/BGVD4	0500-1100
Compliance with Swiss regulations	197	Additional tests on the water heat exchangers: supply (additional of PED documents) supplementary certificates and test certifications	Conformance with Swiss regulations	0500-1100
Compliance with Russian regulations	199	EAC certification	Conformance with Russian regulations	0500-1100
Compliance with Australian regulations	200	Unit approved to Australian code	Conformance with Australian regulations	0500-1100
Insulation of the evap. in/out ref.lines	256	Thermal insulation of the evaporator entering/ leaving refrigerant lines with flexible, UV resistant insulation	Prevents condensation on the evaporator entering/leaving refrigerant lines	0500-1100
Enviro-Shield anti-corrosion protection	262	Coating which uses a conversion process to alter the aluminium surface into a coating which forms an integral part of the coil. Complete immersion in a bath to ensure 100% coverage. No heat transfer variation, resistance tested for 4000 hours in saline mist in accordance with ASTM B117	Improved corrosion resistance, recommended for use in moderately corrosive environments	0500-1100
Super Enviro-Shield anti-corrosion protection	263	Extremely durable and flexible epoxy polymer coating applied by electro coating process, final UV protective topcoat. Minimal heat transfer variation, tested to withstand 6000 hours in constant neutral saline mist in accordance with ASTM B117, resistance greater than impacts in accordance with ASTM D2794	Improved corrosion resistance, recommended for use in extremely corrosive environments	0500-1100
Welded evaporator connection kit	266	Victaulic piping connections with welded joints	Easy installation	0500-1100
Welded heat recovery connection kit	267	Victaulic piping connections with welded joints	Easy installation	0500-1100
Evaporator with aluminium jacket	281	Evaporator covered with an aluminium sheet for thermal insulation protection	Improved resistance to aggressive climate conditions	0500-1100

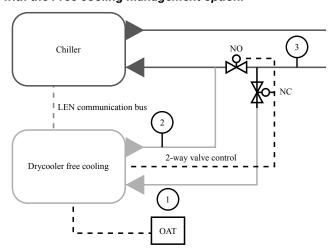
Option	No.	Description	Advantage	Use with 30KAV
EMC class. C2, as per EN 61800-3	282	Additional RFI filters on the unit power line	Decreases the variable frequency drive (VFD) emission level according to C2 category requirements and allow its compliancy with use in first environment (so called, residential environment).	0500-1100
230 V electrical plug	284	230 VAC power supply source provided with plug socket and transformer (180 VA, 0.8 A)	Enables connection of a laptop or an electrical device during system start-up or maintenance	0500-1100
Expansion tank	293	6-bar expansion tank integrated in the hydraulic module (requires a hydraulic module option)	Easy and fast installation (plug & play), & Protection of closed water systems from excessive pressure	0500-1100
Fast capacity recovery	295	New software algorithms to allow quick restart and fast loading while preserving the reliability of the unit		0500-1100
Carrier Connect (only European distribution companies)	298	3G router board NOTE 1: requires option 149 NOTE 2: when more than one machine is installed on site, only one of them shall be equipped with option 298 while all of them must be equipped with option 149 NOTE 3: If a Carrier® PlantCTRL™ system is on the site option 298 must be integrated in this Carrier® PlantCTRL™ system and option 149 must remain on each unit	Enabler for Carrier Connect service offer	0500-1100
Variable Water Flow control	299	The hydraulic control functions that permit control of the water flow rate based on different possible logics (at customer choice): constant ΔT , constant outlet pressure and "fixed-speed" control	When variable-speed pumps on the primary circuit, the VWF control modulates flow rate through the evaporator, minimising pump consumption while ensuring safe/optimised chiller operation	0500-1100
Free Cooling dry cooler management	313	Control and connections to a free cooling drycooler 09PE or 09VE fitted with the FC control box		0500-1100
Compliance with UAE regulation	318	Additional label on the unit with rated power input, rated current and EER following AHRI 550/590		0500-1100
Compliance with Qatar regulation	319	Specific nameplate on the unit with power supply 415 V+/-6%	Compliance with KAHRAMAA regulation in Qatar.	0500-1100
Hydraulic connection kit	325	Hydraulic connections connected to the evaporator and condensers	Easy installation	0500-1100
Conformance with Moroccan regulations	327	Specific regulatory documentation	Conformance with Moroccan regulations	0500-1100

12.1 - Unit operation with a free cooling drycooler

12.1.1 - Operating principle

The units have been designed to optimise the operation of systems, using drycoolers as a free cooling system (method using low outdoor air temperatures to chill the water in the air conditioning system).

This system enable substantial energy and cost savings, and is at its most effective when the outdoor air temperature is low.


The unit's TouchPilot control system includes algorithms to enable constant automatic optimisation of:

- the operation of the drycooler fans,
- the flow rate variation in the water loop,
- the cooling capacity (the drycooler and chiller can operate independently or simultaneously),
- the positions of the valves depending on the operating mode

The control defines the optimal configuration, taking the water setpoint value, outdoor air temperature, and water loop temperature into account (the control will give priority to the drycooler).

Parallel control of the fans and of the variable flow rate of the water loop enable the system to operate at outdoor temperatures of down to -20°C without any additional control.

Warning: the drycooler and chiller both need to be equipped with the Free cooling management option.

For optimal free cooling operation, the chiller has to be configured:

- using the water inlet temperature control,
- using the temperature delta control for the variable-speed pump option.

12.1.2 - Communication to control the drycooler

When the option is selected, a specific electronic board is integrated in the drycooler electrics box. An LEN communication bus connected between the drycooler (AUX1 board) and the chiller is needed for overall control of the system.

This cable must be a 3-point Wago type cable (5 mm spacing or equivalent) and must be shielded.

The board integrated in the drycooler electrics box has analogue inputs for the outdoor air temperature sensor (1), water loop return sensor (3) and drycooler water outlet temperature sensor (2), as well as digital outputs for controlling the fans.

The option works as a system split in two parts:

The chiller (with free cooling option):

dedicated control algorithms supplied with the LEN connector to control the drycooler.

The drycooler (with free cooling option):

- AUX board with the I/O,
- room air temperature sensor to be placed outdoors,
- drycooler water outlet temperature sensor (factory-fitted),
- water loop temperature sensor (to be fitted on the common pipe upstream of the valve),
- control and 230 V power supply for 2 two-way valves or one three-way valve.

The difference between the drycooler outdoor air temperature and the water loop sensor temperature determines whether or not it is possible to activate free cooling mode.

12.1.3 - Configuration of the fan control

To set the configuration corresponding to the drycooler installed (number of fans, control type – fixed or variable speed), please refer to the instructions in the TouchPilot control manual. Using these parameters, the TouchPilot control will activate the adequate number of outputs to control the fans.

TouchPilot controls the automatic switching of all fans, based on operating time and number of start-ups, to ensure the fan motors provide a long service life.

Compatible fan configuration:

- 1 to 20 fans,
- fixed speed or variable speed,
- fans in one 1 or 2 lines.

Refer to the drycooler wiring diagram to see the arrangement of the fan stages.

12.1.4 - Valves on the water loop

The free cooling system requires 2 two-way valves (one normally open, one normally closed) or a three-way valve, not supplied with the unit or the drycooler.

A two-way valve kit is available in the list of accessories for the drycooler.

The drycooler electrics box has a 230 V power supply for 2 two-way valves.

Recommended motorised valve (default component): 230 V 3-point.

See the drycooler wiring diagram for cabling the valves to the customer terminal strip.

12.1.5 - Guidelines for system installation

For the physical properties, dimensions and performances: see the drycooler documentation.

For the electrical connections, see the electrical wiring diagram supplied with the drycooler.

For software configuration information, refer to the control documentation of the chiller.

For correct installation of the drycooler, the rules for calculation and sizing relating to the following areas must be observed:

- sizing of the water piping;
- pressure drops (verify that the operating pressure of the unit pump is sufficient compared to the pipes and valves pressure drops; check for all operating modes);
- maximum height for the drycooler (in relation to the unit relief valve);
- suitable positioning of the temperature sensors: outdoor air temperature and water loop temperature.

12.2 - Brine Options

Option 8 enables chilled water production down to a temperature of -4 °C with ethylene glycol and -2 °C with propylene glycol. The unit is equipped with insulation on the low pressure pipes and new control algorithms.

Option 5 enables chilled water production down to a temperature of -8 °C with ethylene glycol and -5 °C with propylene glycol. The unit is equipped with a special evaporator, insulation on the low pressure pipes, and new control algorithms.

For option 6, turbulators are installed in the pipes to maintain a good heat exchange down to a water outlet temperature of -15 °C.

The operating range is based on:

- the size of the machine,
- the type of glycol,
- its concentration,
- the flow rate,
- the temperature of the glycol solution,
- the condensing pressure (room temperature).

Refer to the e-catalogue to find out the operating range for each

Frost protection

The protection provided to the evaporator against low pressure and freezing depend on the amount of antifreeze in the water loop.

The evaporator pinch point ((water outlet temperature) - (evaporation temperature)) and the protection against ice formation, depend on the amount.

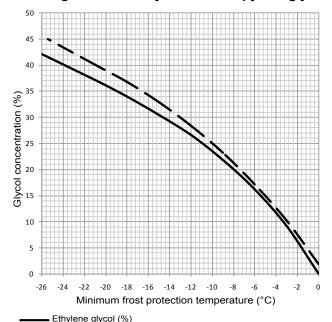
It is therefore crucial to check the amount of antifreeze in the loop carefully during the initial system start-up (allow it to circulate for 30 minutes to check that the mixture is homogeneous before sampling).

Refer to the manufacturer's data to define the frost protection, based on the measured concentration amount.

The minimum temperature for frost protection must be entered in the parameters on the unit's controller.

This value will enable the following limits to be defined:

- 1. Evaporator antifreeze protection.
- 2. Low pressure protection.


For information, based on the antifreeze solutions used in our laboratories, the protection values provided by our supplier are as follows (these values may change depending on the supplier):

It is therefore recommended that system start-up for a low or very low temperature installation is performed by the manufacturer.

Required glycol concentration

- Propylene glycol (%)

Freezing curve for Ethylene and Propylene glycol

For example, based on the curves given above, if the mass concentration measurement for ethylene glycol measured in the loop is 30 %, the frost protection temperature value to be entered in the software is -14.8 $^{\circ}$ C.

Minimum glycol concentration									
30KAV opt	ion 6	Evaporator Delta T °C [EWT (°C) - LWT (°C)]							
Fluid type:	EG	3	4	6	8				
	3	1%	2%	3%	5%				
	2	4%	4%	6%	8%				
	1	6%	7%	9%	11%				
	0	9%	10%	11%	14%				
	-1	11%	12%	14%	17%				
_	-2	14%	15%	17%	19%				
THE.	-3	16%	17%	19%	22%				
Evaporator water outlet LWT (°C)	-4	19%	20%	22%	25%				
ري عte	-5	21%	22%	25%	27%				
ator wate LWT (°C)	-6	24%	25%	27%	30%				
E≱dc	-7	26%	27%	29%	33%				
οd	-8	28%	29%	30%	35%				
E E	-9	31%	32%	35%	35%				
	-10	34%	35%	35%	35%				
	-11	35%	35%	35%	-				
	-12	35%	35%	-	-				
	-13	35%	37%	-	-				
	-14	37%	40%	-	-				
	-15	40%	40%	-	-				

30KAV opt	ion 6	Evaporator Delta T °C [EWT (°C) - LWT (°C)]						
Fluid type:	PG	3 4 6 8						
	3	4%	7%	12%	17%			
	2	7%	9%	15%	19%			
	1	9%	12%	17%	22%			
et	0	12%	15%	20%	24%			
Evaporator water outlet LWT (°C)	-1	15%	18%	22%	26%			
er c	-2	18%	20%	25%	29%			
« «ad	-3	21%	23%	28%	31%			
δr MT	-4	23%	26%	30%	34%			
ora L	-5	26%	28%	33%	35%			
ар	-6	29%	31%	35%	35%			
ш	-7	31%	34%	35%	35%			
	-8	34%	35%	35%	-			
	-9	35%	35%	-	-			
	-10	35%	-	-	-			

IMPORTANT:

- It is vital to perform a (minimum) annual inspection of the glycol level and adjust the software's frost protection based on the measured level.
- This procedure must be performed systematically if water or antifreeze solution is added.
- Observe the minimum frost protection temperature based on the water outlet temperature.

NOTE:

- In the case of frost protection of the unit by low air temperature, the percentage brine must be evaluated accordingly.
- The maximum glycol content for units equipped with a hydraulic module is 45 %.
- The maximum recommended temperature differential is 5 K.
- To facilitate maintenance operations, it is recommended that isolation valves are installed upstream and downstream of the machine

It is essential to use precisely the correct concentration of glycol in the loop. Too high a concentration may have significant adverse effects on the performance of the evaporator, and therefore of the unit as a whole (decrease in the evaporation temperature). Too low a concentration may generate alarms or allow the evaporator to freeze. Damage caused by frost is not covered by the warranty.

IMPORTANT: Option 6 - Turbulators - water flow direction:

The water flow direction must be observed with the turbulators. If there is a risk that the flow will be reversed, check valves must be installed to guarantee the positioning of the turbulators.

Hydraulic kit and option 5:

If the hydraulic kit option is selected alongside option 5, the pumps will be set at a default minimum frequency of between 35 Hz and 45 Hz, according to the options, to prevent the flow rate being too low. This minimum frequency may, however, be adjusted using the control.

Brine + Heat recovery:

When the Brine and heat recovery options are combined, the glycol type and concentration must be entered in the software (Service1 table).

12.3 - Heat recovery (Option 49/Option 50)

30KAV/30KAVP with option 49		500	550	600	650	720	800	900	1000	1100
Unit length + options			•			•	*	•	,	
30KAV + option 49	mm	5578	5578	6772	6772	6772	6772	7962	7962	9155
30KAV_option_119+ & 30KAVP + option 49	mm	6735	6735	6735	6735	7925	9120	9120	10305	10305
Width	mm	2261	2261	2261	2261	2261	2261	2261	2261	2261
Height	mm	2324	2324	2324	2324	2324	2324	2324	2324	2324
Operating weight ⁽¹⁾										
30KAV + option 49	kg	5177	5190	5592	5605	5843	6304	6741	7222	7657
30KAV + option 49 + option 325 (2)	kg	5321	5334	5757	5770	6008	6463	6906	7386	7822
30KAV_option_119+ & 30KAVP + option 49	kg	5728	5735	5748	5751	6183	7007	7116	7891	7920
30KAV_option_119+ & 30KAVP option 49 + option 325 (2)	kg	5869	5876	5912	5915	6347	7166	7280	8056	8085
Partial heat recovery				В	razed-pl	ate heat	exchange	er		
Circuit A		B320 LTL	B320 LTL	B320 LTL	B320 LTL	B320 LTL	B320 LTL	B320 LTL	B320 LTL	B320 LTL
Circuit B		B320 LTL	B320 LTL	B320 LTL	B320 LTL	B320 LTL	B320 LTL	B320 LTL	B320 LTL	B320 LTL
Water volume	ı	6/6	6/6	6/6	6/6	6/6	10 / 6	10 / 6	10 /10	10 /10
Hydraulic connections without option 325 (2)			`		Vio	taulic® ty	/ре	`		
Connections on recovery condenser side	inches	4	4	4	4	4	4	4	4	4
Diameters of external pipes on recovery condenser side	mm	114,3	114,3	114,3	114,3	114,3	114,3	114,3	114,3	114,3
Connections on evaporator side	inches	5	5	6	6	6	6	8	8	8
Diameter of external pipes on evaporator side	mm	141,3	141,3	168,3	168,3	168,3	168,3	219,1	219,1	219,1
Hydraulic connections with option 325 (2)		Victaulic® type								
Connections on recovery condenser side	inches	5	5	5	5	5	5	5	5	5
Diameters of external pipes on recovery condenser side	mm	141,3	141,3	141,3	141,3	141,3	141,3	141,3	141,3	141,3
Connections on evaporator side	inches	5	5	6	6	6	6	6	6	6
Diameter of external pipes on evaporator side	mm	141,3	141,3	168,3	168,3	168,3	168,3	168,3	168,3	168,3

⁽¹⁾ Values are guidelines only. Refer to the unit name plate.

⁽²⁾ Option 325 = Hydraulic connection kit

									1	
30KAV/30KAVP with option 50		500	550	600	650	720	800	900	1000	1100
Unit length + options										
30KAV + option 50	mm	5578	5578	6772	6772	6772	6772	7962	7962	9155
30KAV_option_119+ & 30KAVP + option 50	mm	6735	6735	6735	6735	7925	9120	9120	10305	10305
Width	mm	2261	2261	2261	2261	2261	2261	2261	2261	2261
Height	mm	2324	2324	2324	2324	2324	2324	2324	2324	2324
Operating weight ⁽¹⁾										
30KAV + option 50	kg	5230	5243	5718	5731	5969	6489	6927	7451	7860
30KAV + option 50 + option 325 (2)	kg	5380	5393	5899	5912	6149	6696	7140	7662	8072
30KAV_option_119+ & 30KAVP + option 50	kg	5781	5788	5874	5877	6327	7192	7301	8120	8149
30KAV_option_119+ & 30KAVP option 50 + option 325 (2)	kg	5934	5941	6054	6057	6507	7399	7514	8332	8361
Partial heat recovery				В	razed-pl	ate heat	exchang	er		
Circuit A		B320 LTH	B320 LTH	B320 LTH	B320 LTH	B320 LTH	B427M1	B427M1	B427M1	B427M1
Circuit B		B320 LTH	B427M1	B427M1						
Water volume	I	18 / 18	18 / 18	29 / 29	29 / 29	29 / 29	48 / 29	48 / 29	48 / 48	48 / 48
Hydraulic connections without option 325 (2)					Vio	ctaulic® ty	уре			
Connections on recovery condenser side	inches	4	4	4	4	4	4	4	4	4
Diameters of external pipes on recovery condenser side	mm	114,3	114,3	114,3	114,3	114,3	114,3	114,3	114,3	114,3
Connections on evaporator side	inches	5	5	6	6	6	6	8	8	8
Diameter of external pipes on evaporator side	mm	141,3	141,3	168,3	168,3	168,3	168,3	219,1	219,1	219,1
Hydraulic connections with option 325 (2)				Vio	ctaulic® ty	уре				
Connections on recovery condenser side	inches	5	5	5	5	5	6	6	6	6
Diameters of external pipes on recovery condenser side	mm	141,3	141,3	141,3	141,3	141,3	168,3	168,3	168,3	168,3
Connections on evaporator side	inches	5	5	6	6	6	6	6	6	6
Diameter of external pipes on evaporator side	mm	141,3	141,3	168,3	168,3	168,3	168,3	168,3	168,3	168,3

 ⁽¹⁾ Values are guidelines only. Refer to the unit nameplate.
 (2) Option 325 = Hydraulic connection kit

12.3.1 - Operating principle

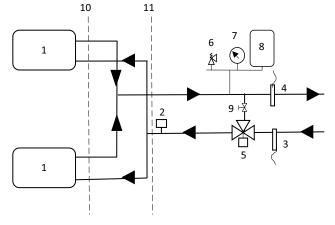
Options 49 and 50 enable free hot water to be produced by recovering the waste heat emitted at the compressor discharge point

Option 49 (partial heat recovery) is designed to recover approximately 20% of the total output discharged by the chiller(depending on the operating conditions).

Option 50 (total heat recovery) is designed to recover approximately 95% of the total output discharged by the chiller (depending on the operating conditions).

Both options have a plate heat exchanger installed as standard with air-cooled condensers on the compressor discharge line on each circuit. The flow of refrigerant still passes through the recovery exchangers, ensuring hot water is produced once the unit is in chilled water production mode.

There is no isolation valve or solenoid valve on the refrigerant circuit; hot water production is switched off by actuating a three-way valve and/or a pump on the hot water hydraulic circuit. (See the control manual)


12.3.2 - Condenser hydraulic connection

The unit is delivered with two temperature sensors and a flow rate controller which control the heat recovery.

The water flow controller must be installed on the installation's water inlet leading to the heat recovery condensers. (The maximum length of the temperature sensors and flow rate controller is 15 metres)

It is recommended to place the temperature sensors and the flow rate controller as shown in the diagram below to guarantee optimal control of the hot water temperature.

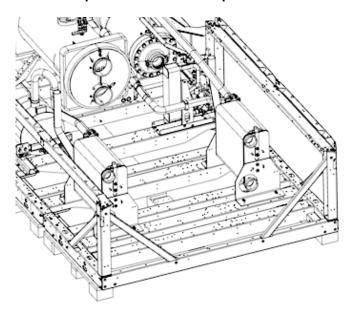
Note: The water can be regulated on the water inlet or outlet. (See the control manual)

Key

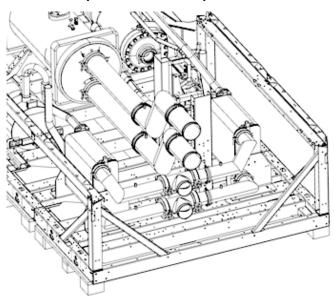
Component of option 49 / 50

- 1 Heat reclaim condenser
- 2 Condenser water flow controller (supplied)
- Water inlet temperature sensor (supplied)
- Water outlet temperature sensor (supplied)

Installation components (installation example)


- 5 Three-way valve (recommended)6 Safety valve
- 7 Pressure gauge
- 8 Expansion tank (100°C minimum)
- 9 Recovery condenser water flow rate balancing valve
- 10 Border between the unit and the installation (without option 325)
- 11 Border between the unit and the installation (with option 325)

Note: For the hydraulic installation, it is recommended that Carrier's recommendations are followed. (See chapter 8.1. Precautions for use)


Hydraulic connection with option 325:

Option 325 enables hydraulic connection between the two recovery exchangers to obtain only one hot water inlet/outlet.

Option 49/50: without option 325

Option 49/50: with option 325

Note:

Option 41C ensures thermal insulation of the recovery and evaporator water pipes to protect them from frost.

12.3.3 - Heat recovery operation

Heat recovery mode is activated and deactivated by a three-way valve and/or a pump on the hot water hydraulic circuit. The control system will then adapt to the request by regulating the flow of water into the condensation exchangers and the flow of air into the air-cooled condenser.

Water flow control:

A 0-10 V output is available on the unit electronic board to control a three-way valve or a variable flow pump. It is strongly recommended that one of these two components is installed to ensure a fluid transition between recovery mode and standard mode. The control system will start heat recovery, and maintain the hot water setpoint temperature.

(See the control manual)

Controlling the recovery capacity:

There are two available operating modes for options 49 and 50: Optimised recovery mode: (the default configuration with option 50)

This mode enables recovery capacity to be adjusted by gradually reducing the ventilation speed to the configured setpoint. When there is no longer a recovery request, the control system increases the ventilation speed and cuts off the water flow.

Economy mode: (the default configuration with option 49)

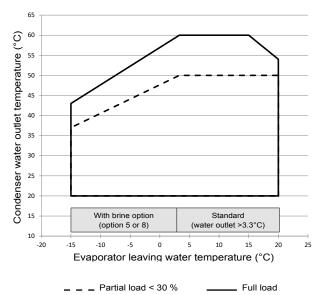
This mode enables recovery of desuperheating only. The machine's efficiency is not affected by the recovery request. The control system only adjusts the water flow and does not alter the ventilation speed.

Frost protection:

The heat recovery condensers are equipped with electrical heaters which protect them against frost. They are activated if the outdoor air temperature is less than 3 °C and if the machine is not in chilled water production mode.

Note: If there is glycol in the hot water loop, it is possible to configure it and deactivate the frost protection on the water-cooled condenser side.

12.3.4 - Operating range:


Operating range		Minimum	Maximum
Hot water temperature (option 49)	°C	18(1)	65 ⁽²⁾
Hot water temperature (option 50)	°C	18 ⁽¹⁾	60(2)(3)

- (1) For installations with a lower temperature, a three-way valve must be used.
- (2) If the temperature difference between the air and the hot water demand is significant, it is recommended to activate optimised recovery mode (see recovery operation)
- (3) For option 50, the maximum hot water temperature depends on the water temperature at the evaporator. (See option 50: Operating limit graph)

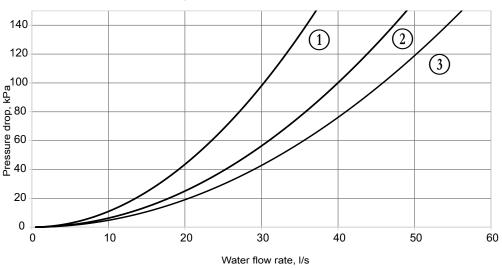
Option 50: Operating limit

Limitation of the condenser water outlet temperature is due to the screw compressor operating range. If the condenser water outlet temperature is above the limit value given in the curves below, the unit will remain in heat recovery mode but will limit the recovered heating capacity by increasing the ventilation speed.

Option 50: Total heat recovery Operating limits:

Note:

- Evaporator ∆T = 5K
- Condenser $\Delta T = 5$
- These operating ranges are guidelines only. Verify the operating range with the Carrier electronic catalogue.


Note: The Carrier electronic catalogue generates recovery performances under wind conditions of 12 km/h. If the unit is located in an area exposed to the wind, the recovery capacity may be affected.

12.3.5 - Condenser hydraulic pressure drop:

The pressure drops below are calculated with the two recovery exchangers in parallel.

Option 49: Partial heat recovery

Hydraulic pressure drop

- 30KAV/P-0500; 30KAV/P-0550
- 30KAV/P-0600; 30KAV/P-0650; 30KAV/P-0720
- ③ 30KAV/P-0800; 30KAV/P-0900

Option 50: Total heat recovery

Hydraulic pressure drop

- ① 30KAV/P-0500; 30KAV/P-0550 ② 30KAV/P-0600: 20KAV/T 30KAV/P-0600; 30KAV/P-0650; 30KAV/P-0720
- ③ 30KAV/P-0800; 30KAV/P-0900
- 30KAV/P-1000; 30KAV/P-1100

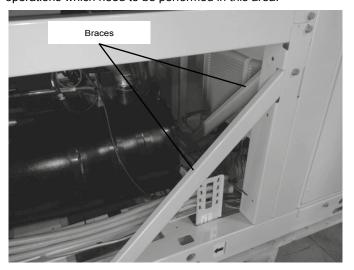
To ensure optimal efficiency and reliability of the units, we recommend establishing a maintenance contract with your local Carrier Service organisation. This contract will include regular inspections by Carrier Service specialists so that any malfunction is detected and corrected quickly, ensuring that no serious damage can occur.

A Carrier Service maintenance contract is the best way to ensure the maximum operating life for your equipment and, through the expertise of Carrier technicians, provides the ideal way to manage your system cost effectively.

Refrigeration equipment must be maintained by professional technicians, whilst routine checks can be carried out locally by specialist technicians (refer to the standard EN 378-4).

All refrigerant charging, removal and draining operations must be carried out by a qualified technician and with the correct equipment for the unit. Any inappropriate handling can lead to uncontrolled fluid or pressure leaks.

IMPORTANT: Before performing any work on the machine ensure it is de-energised. If a refrigerant circuit is opened, it must be evacuated, recharged and tested for leaks. Before any operation on the refrigerant circuit, it is necessary to remove the complete refrigerant charge from the unit with a refrigerant charge transfer unit.


Simple preventive maintenance will allow you to get the best performance from your HVAC unit:

- Improved cooling performance,
- Reduced electricity consumption,
- Prevention of accidental component failure,
- Prevention of major time-consuming and costly work,
- Protection of the environment.

There are five maintenance levels for refrigeration units, as defined by the AFNOR X60-010 standard.

NOTE: Any deviation from or failure to observe these maintenance criteria will render the guarantee conditions for the refrigeration unit null and void, and will release the manufacturer, Carrier SCS, from its liability.

The braces located at the back of the electrical cabinets (see photo below) are provided to reinforce the machine structure when being transported. Once the unit has been installed in its operating location, they can be removed to facilitate any maintenance operations which need to be performed in this area.

13.1 - Level 1 maintenance

See Note above.

These simple procedures can be carried out by the user:

- Visual inspection for oil traces (sign of a refrigerant leak).
- Check for detached protective devices, and improperly closed doors / covers.
- If the unit does not operate, check its alarm report (see the report in the SmartView control manual).
- Check the filter fouling level at the air vents in the electrical box.
- Check the fouling level at the exhaust air openings on the top of the power cabinet (fouling, snow, sand, etc.).
- Check for any general visible signs of deterioration.

13.2 - Level 2 maintenance

See Note above.

This level requires specific expertise in electrical, hydraulic and mechanical systems. it is possible that this expertise may be available locally; there may be a maintenance service, industrial site or specialist subcontractor in the area.

In these cases, the following maintenance operations are recommended:

Carry out all level 1 operations, then:

- At least once a year, tighten the electrical connections for the power supply circuits (see tightening torques table)
- Check and tighten all control connections, as required.
- Check that the differential circuit breakers are operating correctly every 6 months (if present).
- Remove the dust and clean the interior of the electrical boxes, as necessary. Check the condition of the filters.
- Check that the electrical protective devices are present and in good condition.
- Replace the fuses every 3 years or every 15000 hours (ageing).
- Replace the electrical box cooling fans every 5 years.
- Check the height of the anti-vibration mounts (located between the feet of the oil separator and the support rails) after 5 years of use, and each year thereafter. Once the total minimum height of the mount is less than 25 mm, the mounts will need replacing.

Hydraulics:

- When working on the hydraulic circuit, take care not to damage the adjacent air heat exchanger,
- Check the water connections,
- Check the condition of the expansion tank (presence of corrosion or loss of gas pressure) and replace it if required,
- Drain the hydraulic circuit (see chapter "Water flow control procedure"),
- Clean the water filter (see chapter "Water flow rate control procedure"),
- Replace the packing around the pump body after 20,000 hours of operation and the bearings after 20,000 hours,
- Check the operation of the flow switch,
- Check the condition of pipe thermal insulation,
- Check the concentration of the anti-freeze protection solution (ethylene glycol or propylene glycol),
- Check the water flow via the heat exchanger pressure difference,
- Check the condition of the heat-transfer fluid or the water quality,
- Check for corrosion of the steel pipe work.
- Check the unit operating parameters, compare them with the previous values and note any changes,
- Keep an up-to-date service record specific to the refrigeration unit in question.
- Inside the electrical box, check that there is voltage on the connection terminals for the evaporator heaters and variable-speed drives (activate quick test mode to control the heaters)

IMPORTANT: Ensure all adequate safety measures are taken for all these operations: use appropriate PPE (personal protective equipment), comply with all applicable industry and local regulations, and use common sense.

13.3 - Level 3 (or higher) maintenance

Maintenance at this level requires specific skills/qualifications/tools and expertise that only the manufacturer, or one of its approved representatives, is able to ensure. This maintenance work relates to the following:

- Replacement of a major component (compressor, evaporator).
- Operations on the refrigerating circuit (handling refrigerant).
- Modification of factory-set parameters (change of application).
- Movement or disassembly of the refrigeration unit.
- Any operation due to proven lack of maintenance.
- Any operation covered by the warranty.

To reduce waste, the refrigerant and the oil must be transferred in accordance with applicable regulations, using methods that limit refrigerant leaks and with materials that are suitable for the products.

Any leak detected must be repaired immediately.

The compressor oil that is recovered during maintenance contains refrigerant and must be treated accordingly.

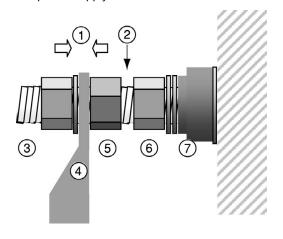
Refrigerant under pressure must not be purged to the open air.

If the refrigerant circuit is opened for a period of up to one day, cap all openings. If open for longer, blanket the circuit with nitrogen.

13.4 - Tightening the electrical connections

13.4.1 - Tightening torques for the main electrical connections

Component	Designation in the unit	Value (N.m)
Customer connections		
M10 screw-nut on phases	L1/L2/L3	49
M12 screw-nut on earth strip	PE	49
Compressor variable frequency drives		
M10 nuts on phases	GS*	29,5
M10 or M8 nut on earth	R/S/T U/V/W	29,5
M8 nuts on internal connections (fuses and busbars)	GND	14,5
Compressor connections		
M12 nuts on phases	EC*	23
M12 screw on ground	1/2/3	25
Variable frequency drives for the fans and hydraulic pumps		
Screws on phases and earth, VFD up to 11kW	GS*	2,5
Screws on phases and earth, 15kW VFD	GS*	4,5
Circuit breaker cage terminal and differential block screws	QM*	1,7
Schneider type GV2	QF100A	2
Schneider type IC60	QF*	3,5
ABB type S803S	QM10*	1,3
Switch cage terminal screws		
Schneider LC1K0610B7 AC3 6A	K*	1,3
Schneider LC1SKGC200B7 AC3 5A	K*	0,8
ABB type AS09	K*	1,2
Potential transformer	TC*	0,6
Control cabinet distributor		13


WARNING: the compressors on 30KAVP units feature motors with permanent magnets. Do not open the compressor. Ensure that the terminal box is securely fixed in place before filling the machine with refrigerant, draining the refrigerant or rotating the motor shaft. The compressor cannot be removed.

WARNING: strong magnetic field inside the compressor casing. An electrical current may be generated on the compressor terminals and on the circuits which are connected when filling/emptying the refrigerant.

WARNING: The tightening of the connections at the compressor terminals requires special precautions. Refer to the section below.

13.4.2 - Precautions for connecting to the compressor power terminals

These precautions needs to be applied whenever an operation requires removal of the power conductors connected to the compressor power supply terminals.

- 1. Torque application to tighten the lug
- 2. Avoid contact between the two nuts
- 3. Lug tightening nut
- 4. Flat lug
- 5. Counter-nut
- 6. Terminal tightening nut
- 7. Isolator

The tightening nut on the terminal ⁽⁶⁾ supporting the isolator ⁽⁷⁾ must never be loosened, as it keeps the terminal secure and stops the compressor leaking.

The phase lug ⁽⁴⁾ must be tightened applying the torque between the counter nut ⁽⁵⁾ and the tightening nut ⁽³⁾: during this operation a counter-torque must be applied at counter nut ⁽⁵⁾.

The lock nut ⁽⁵⁾ must not be in contact with the terminal securing nut ⁽⁶⁾.

13.5 - Tightening torques for the main fastenings

	-	
Screw type	Use	Value (N.m)
Metal screw D = 4.8mm	Condenser modules, fan protection grilles, panels	4,2
Metal screw D = 6.3	Plastic impeller	4,2
M8 H screw	Condenser modules, impeller mounting	18
Taptite M10 screw	Condenser modules, chassis, structure, economizer assembly, electrical panels, compressor and oil separator mounting	30
Taptite M6 screw	Pipe supports, condenser modules	7
M8 H screw	MCHE coil	14
M6 H screw	Pipe clip	10
M8 H nut	Oil separator mounting	14
M16 H stud	Compressor mounting	30
M10 H screw	Oil separator mounting	30
M16 H lock nut	Compressor mounting	23
M8 H screw	Filter unit cover	35
M12 H screw	Economiser-compressor flange	40
M16 H stud and nut	Discharge- oil separator flange	130
M8 H screw	Oil line-compressor flange	25
M16 H screw	exchanger water boxes	190
5/8 ORFS nut	Oil line	65
M12/M16 H nut	Victaulic 4" (M12 nut), and 5" (M16 nut) clamps on suction line	65
M16 H screw	Evaporator on chassis	130
Rotalock 1"3/4-12-UN	Liquid line	100
Rotalock 2"1/4-12-UN	Liquid line	145
M20 H nut	Victaulic 5 and 6" clamp on water pipe	45
M6 T30 torx screw	Control cabinet casing panel	4,5
	•	

13.6 - Condenser coil

We recommend that coils are inspected regularly to check the degree of cleanliness. This depends on the environment where the unit is installed, in particular urban and industrial sites, and for units installed near trees that shed their leaves.

Recommendations for maintenance and cleaning of micro-channel coils (MCHE):

- Regularly cleaning the coil surface is essential for correct unit operation.
- Eliminating contamination and removal of harmful residue will increase the operating life of the coils and the unit.
- The maintenance and cleaning procedures below are part of the regular maintenance to increase the operating life of coils.
- Specific recommendation in case of snow: For long term storage, regularly check that no snow has accumulated on the coil.
- Clean the surface of the coil by spraying the coil regularly and uniformly from bottom to top, orienting the water jet at right angles to the surface. Do not exceed a water pressure of 6200 kPa (62 bar) or an angle of 45° to the coil. The nozzle must be at least 300 mm away from the coil surface.
- Clean and scrub the entire coil connections with a soft Nylon, PolyPro® or Tynex® brush and low pressure tap water.

Level 1 cleaning:

- Remove all foreign objects or fragments/debris attached to the coil surface or wedged between the chassis and the supports.
- Use a low-pressure dry air jet to remove all traces of dust from the coil.

Level 2 cleaning:

- Carry out the level 1 cleaning operations.
- Clean the coil using suitable products.

Use appropriate PPE including safety glasses and/or mask, waterproof clothes and safety gloves. It is recommended to wear clothing that covers the whole body.

Specific products approved by the manufacturer for cleaning coils are available from the manufacturer's spare parts network. The use of any other product is strictly prohibited. After the cleaning product is applied, rinsing with water is mandatory (see manufacturer's standard RW01-25).

IMPORTANT: Never use a pressure water spray without a large diffuser.

Concentrated and/or rotating water jets are strictly forbidden. Never use a fluid with a temperature above 45 °C to clean the air heat exchangers.

Correct and frequent cleaning (approximately every three months) will prevent 2/3 of the corrosion problems. Protect the electrical cabinets, the motorised ball valve and the VFDs during cleaning operations. Don't forget to remove protections after cleaning operations.

13.7 - Evaporator maintenance

Check that:

- the insulating foam is neither detached nor torn during works,
- the heaters and probes are operating and correctly positioned in their supports,
- the water-side connections are clean and show no sign of leakage.

13.8 - Compressor maintenance

13.8.1 - Oil separator

Check that the heaters are operating correctly and that they are firmly attached to the oil separator.

13.8.2 - Oil filter change schedule

As keeping the system clean is critical to ensure its reliable operation, there is a filter in the oil pipe at the oil separator outlet.

The oil filter is specified to provide a high level of filtration (5 μ), necessary for ensuring the compressor has a long service life.

The filter should be checked after the first 500 hours of operation, and every subsequent 2000 hours. The filter must replaced as soon as the pressure differential on the filter exceeds 200 kPa (2 bar).

The pressure drop on the filter is determined by measuring the pressure at the discharge (dp) and the oil pressure (op).

The difference in these two pressures will be the pressure drop on the filter, check valve, and solenoid valve.

The pressure drop on the check valve and solenoid valve is approximately 40 kPa (0.4 bar), which should be subtracted from the two oil pressure measurements to give the oil filter pressure drop.

13.8.3 - Checking compressor rotation

Ensuring the compressor rotation is correct is one of the most critical considerations.

Reverse rotation, even for a short period, will have a considerable adverse effect on the compressor's reliability, and may even cause irreparable damage. The reverse rotation protection process must be capable of determining the direction of rotation and stopping the compressor within one second.

Reverse rotation is most likely to occur whenever the wiring at the compressor terminals has been modified.

To minimise any risk of reverse rotation, the following procedure must be applied.

Rewire the electrical wires to the compressor terminals as originally wired. Keep a counter torque on the lower nut on the power supply cable terminal lug when the latter is installed.

When a compressor is replaced, a low pressure switch must be installed temporarily as a safety measure on the high pressure part of the compressor. The purpose of this pressure switch is to protect the compressor against any wiring errors at the compressor terminals.

The electrical contact of the switch would be wired in series with the high pressure switch.

The pressure switch must remain in place until the compressor has been started and direction of rotation has been verified; at this point, the pressure switch can be removed.

The switch that has been selected for detecting reverse rotation is Carrier part number HK01CB001. This pressure switch opens the contacts when the pressure falls below 7 kPa. The pressure switch has a manual reset, which can be reset when the pressure exceeds 70 kPa once more. The pressure switch must be a manual reset type to prevent any risk of the compressor short cycling in the reverse direction.

13.9 - Variable frequency drive maintenance

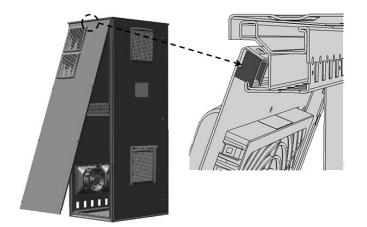
WARNING: Before any work on the variable frequency drive, ensure that the circuit breaker/disconnect switch is open and there is no voltage present (reminder: the capacitors take approximately 20 minutes to discharge. This value is a guide, and may differ from one VFD to another: refer to the information given on the VFD to find out the precise value). Only appropriately qualified personnel are authorised to replace or make modifications to components inside the variable frequency drive.

During periodic inspections, check the condition of the ventilation grilles on the variable frequency drive door; ensure that they are not pierced, damaged or obstructed.

Replace the fan if a "fan replacement" alert/warning is displayed in the list of alarms.

For any other alarm or problem relating to the variable frequency drive, contact Carrier Service

In general, a fault with the variable drive can be corrected by repairing or replacing an internal component. If the complete variable drive needs to be replaced, its removal will require prior removal of the ventilation ducts and the top of the cabinet: refer to the "service guide" document. Similarly, precautions must be taken for handling, as the variable drives are very heavy (between 65kg and 120kg, depending on their size).


The frequency inverters fitted on the units do not require a dielectric test, even if being replaced: they are systematically checked before delivery. Moreover, the filtering components installed in the variable frequency drive can falsify the measurement and may even be damaged.

If the insulation of a component (compressor, cables, etc.) requires testing, the variable frequency drive must be disconnected from the power circuit.

13.10 - Precautions when fitting the casing panel to the side of the control cabinet

The control cabinet casing panel may need to be removed to access the back of the internal partition which houses the electrical components. In this case, precautions must be taken when refitting to ensure the panel is not deformed, as this would irreparably damage the sealing of the cabinet:

The upper section of the casing panel is equipped with a hook which must be engaged in the cabinet's frame: before it is screwed in, the panel should stay in place on the cabinet by itself, and assembly should not require a second person to be present.

13.11 - Periodic test of the high pressure safety loop

The aim of this periodic test is to check the settings of the high pressure safety loop on one of the unit's refrigerant circuits and check it is operating correctly. This procedure must be repeated for each circuit.

- Fit a calibrated pressure gauge on the high pressure part of the circuit (compressor discharge)
- 2. Reset all the active alarms
- Activate the HP test mode for the corresponding circuit via the control interface.

The high pressure test maybe defined in the fan addressing menu (FAN DRV2).

To activate the high pressure test for a specific circuit, access the Maintenance menu.

Select Fan addressing (section 5.5.10).

Set the high pressure test A or high pressure test B to "yes".

- 4. Save the fault trip value
- Check that the two HPS have tripped If the two HPS have tripped, move on to step 9
- If just one of the HPS has tripped,Replace the tripped HPS with another system which has a greater value.

Alternatively, an emergency stop button can be installed.

- 7. Repeat steps 2 to 5
- Check whether the trip values are correct
 The trip values must be between -1.4/+0 bars of the rated value indicated on the unit.
- 9. Reset all the alarms
- 10. Reset both the HPS
- 11. Deactivate the HP test mode for the circuit

Note: For step 6, electrical disconnection of the tripped HPS and its substitution must be performed within the compressor terminal box. All the procedures for accessing an environment containing hazardous live parts must be respected.

The connector type must be WAGO 231-302 or equivalent.

14.1 - Shutting down

Separate the units from their energy sources, allow them to cool then drain them completely.

14.2 - Recommendations for disassembly

Use the original lifting equipment.

Sort the components according to their material for recycling or disposal, in accordance with regulations in force.

Check whether any part of the unit can be recycled for another purpose.

14.3 - Fluids to be recovered for treatment

- Refrigerant
- Heat-transfer fluid: depending on the installation, water, brine solution, etc.
- Compressor oil

14.4 - Materials to be recovered for recycling

- Stee
- Copper
- Aluminium
- Plastics
- Polyurethane foam (insulation)

14.5 - Waste Electrical and Electronic Equipment (WEEE)

At the end of its life, this equipment must be disassembled and contaminated fluids removed by professionals and processed via approved channels for waste electrical and electronic equipment (WEEE).

15 - UNIT START-UP CHECKLIST FOR INSTALLERS PRIOR TO CONTACTING CARRIER SERVICE

Pre	eliminary information					
Jol	o name:					
Lo	cation:					
Ins	talling contractor:					
Dis	stributor:					
Eq	uipment					
Mc	del # :					
Со	mpressors and variable drives					
С	ircuit A		Circuit B			
М	odel no.		Model no.			
S	erial number		Serial number			
M	otor#		Motor #			
С	ompressor variable frequency di	rive	Fan variable frequency drive			
	odel no. (circuit A/B):					
	erial number (circuit A/B):		Serial number (circuit A/B):			
٥,	enarnumber (circuit A/b).		Serial number (circuit A/b).			
Ev	aporator					
Mc	del # :					
Se	rial number					
Со	ndenser section					
Mc	del # :					
	here any shipping damage? o, where?					
	Il this damage prevent unit start-up					
_	The contribution is about a discount					
	The unit is installed level					
	The power supply corresponds to the unit nameplate					
	The electrical circuit wiring has been sized and installed correctly					
	The unit earth cable has been connected The electrical circuit protection has been sized and installed correctly.					
	The electrical circuit protection has been sized and installed correctly All the customer connection terminals (power) are tightened					
	All the chilled water valves are ope	,				
	•					
	The chilled water pipes are correctly connected The air present in the chilled hydraulic circuit has been purged					
	The chilled water pump is operating	. •		electrical connection		
	In the case of a unit equipped with explanation).	the hydraulic module, use the				
_	The machine is de-energised once		una Alago namero ele	Alexander filter The		
Ц	Circulate chilled water in the hydrode-energised once the pump test		urs, then remove, clean, and refit	the screen filter. The machine is		
П	The water inlet pipe at the evapora	ator comprises a filter with a	mesh size of 1.2 mm (20 mesh)			

15 - UNIT START-UP CHECKLIST FOR INSTALLERS PRIOR TO CONTACTING CARRIER SERVICE

Unit	start-up			
□ a. □ b. □ c. □ d. □ e.	The oil heaters have been energised for All the discharge and liquid valves are All suction valves are open, if fitted All the oil line valves and economiser and leaks have been located. The unit of 1. on the whole unit of 1. on the couplings because and report any refrigerant leaks the succession of 1.	e open valves (if fitted) are oper t has been checked for le	eaks (including couplir	ngs)
□ g.	Check voltage imbalance: Average voltage = Maximum deviation = Voltage imbalance =	AB	V	BC
□ h.	Voltage imbalance less than 2%			
will i elect		phase imbalance exce	eds 2% for voltage,	e imbalance constitutes misuse which or 10% for current, contact your loca orrective measures have been taken.
	Water loop volume =			litres
	Calculated volume =			litres
	3.25 litres/nominal kW capacity for air			nues
	6.5 litres/nominal kW capacity for cool	-	20	
	Correct loop volume established	ing in industrial processor	50	
	Proper loop corrosion inhibitor include	ed.		litres of
	Correct loop frost protection included			litres of
	The installation pipework is equipped			
	The water inlet pipe at the evaporator			
Evap	orator pressure drop check			
□ Ev	raporator inlet =	kPa		
□ Ev	aporator outlet =	kPa		
□ Oι	utlet - inlet =	kPa		
to de To No	NING: Calculate the evaporator press termine the flow rate in litres per sect tal = minal kW = te total is greater than unit's minimum flo te total corresponds to the specifications	ond. Check the unit's n l/s l/s ow rate		tables (in the product documentation
Repo	NING: Once the unit is energised, che rt all alarms:ial notes:			·
To st	art the chiller			
	NING: Be sure that all service valve		the pump is on bef	ore attempting to start this machine

 $\hfill\Box$ The unit starts and operates correctly

15 - UNIT START-UP CHECKLIST FOR INSTALLERS PRIOR TO CONTACTING CARRIER SERVICE

Temperatures and pressures

WARNING: Once the unit has been operating for a while and the pressures have stabilised, record the following:
Evaporator water inlet
Evaporator water outlet
Evaporator water inlet Evaporator water outlet Room temperature
JICCUIT A SUCTION PRESSURE
Circuit B suction pressure
Circuit B suction pressure
Circuit B discharge pressure
Circuit A suction temperature
Circuit B suction temperature
Circuit A discharge temperature
Circuit B discharge temperature
Circuit B discharge temperature
Refrigerant liquid pressure and temperature, Circuit B
Subcooling value, Circuit A
Subcooling value, Circuit B

16 - APPENDICES (PROVIDED IN THE DOCUMENT WALLET WITH THE INSTRUCTION MANUAL)

- 16.1 Appendix 1: Declaration of conformity
- 16.2 Appendix 2: Wiring diagram
- 16.3 Appendix 3: Machine PID
- 16.4 Appendix 4: Dimensional drawings

